Reanimating paralyzed hands using an implantable, brain-controlled functional electrical stimulation neuroprosthesis

使用可植入的、大脑控制的功能性电刺激神经假体使瘫痪的手复活

基本信息

项目摘要

Project Summary The long-term goal of this study is to reanimate paralyzed hands using a fully implantable brain-controlled functional electrical stimulation neuroprosthesis for spinal cord injured patients to use at any time. The overall objective of this proposal, which is the next step toward attainment of the long-term goal, is to present an implantable brain-controlled hand neuroprosthesis in non-human primates that returns function to paralyzed musculature through electrical stimulation and does not sacrifice performance. Previous brain-controlled functional electrical stimulation neuroprostheses required hundreds of wires connected to towers of computers that consume power at rates unreasonable for portability to obtain the presented decode performance, rendering usage of the neuroprostheses restricted to the laboratory (Bouton et al. 2016, Ajiboye et al. 2017). The central hypothesis is that the 300-1,000 Hz spiking band power (SBP) feature will allow safely implantable power levels while maintaining the decode performance of 30 kSps threshold crossings. The rationale of the proposed research is that the 15x bandwidth reduction over conventional recording paradigms and single unit specificity of SBP dramatically cut the power needed to extract features without any loss in single-unit performance. In the first aim, a low-power multiple degree of freedom decoding method will be developed on an embedded platform. Irwin et al. demonstrated that SBP can predict open-loop finger position with high performance (Irwin et al. 2016). However, the monkey performed a single degree of freedom two target acquisition task. It remains unknown if SBP will maintain high performance when decoding complex movements. Consequently, SBP will be used to decode the more complicated center-out multiple finger task on the low-power embedded device presented in Bullard, Nason et al. 2018 (in submission). It is hypothesized that SBP decoders will perform better than threshold crossing decoders in closed-loop multiple finger tasks, even on the embedded device. The purpose of the second aim is to investigate closed-loop functional electrical stimulation of hand muscles using the embedded neural signal processor and the Networked Neuroprosthesis in a non-human primate. To date, the Networked Neuroprosthesis developed at Case Western Reserve University has been unable to provide intuitive multiple finger control to cervical level spinal cord injury patients. It is hypothesized that a brain interface is required to make the Networked Neuroprosthesis intuitive, but there exists no fully implantable solution yet. The device from the first aim will be used to present an implantable hand neuroprosthesis ready for human clinical trials. The contribution of this work is expected to be an implantable, intuitive, brain-controlled functional electrical stimulation hand neuroprosthesis to return some independence to spinal cord injured patients. This contribution will be significant because it will provide a hand neuroprosthesis that patients can take home with them for full- time use. The proposed research is innovative, in the opinion of the researchers, because it is the first system capable of acquiring signals specific to single units using an order of magnitude less power than the standard.
项目摘要 这项研究的长期目标是使用完全植入的脑控制 脊髓损伤患者的功能电刺激神经假体随时使用。总体 该提案的目标是实现长期目标的下一步 在非人类灵长类动物中植入脑控制的手神经假期,使功能瘫痪 通过电刺激的肌肉肌肉,不会牺牲性能。以前的大脑控制 功能性电刺激神经刺激需要数百条连接到计算机塔的电线 以利率不合理地消耗电力,以获得提出的解码性能,并渲染 神经假体的使用仅限于实验室(Bouton等,2016,Ajiboye等人,2017年)。中央 假设是300-1,000 Hz尖峰带功率(SBP)功能将允许安全植入功率水平 同时保持30 ksps阈值交叉的解码性能。提议的理由 研究是,比传统记录范例和单个单元特异性的15倍带宽降低 SBP急剧削减了提取功能所需的功率,而单单元性能却没有任何损失。在 首先,将在嵌入式平台上开发低功耗多个自由解码方法。 Irwin等。证明SBP可以通过高性能预测开环的位置(Irwin等,2016)。 但是,猴子执行了单一的自由度两个目标获取任务。仍然未知是否 在解码复杂运动时,SBP将保持高性能。因此,SBP将用于 解码在呈现的低功率嵌入式设备上更复杂的中心输出多手指任务 Bullard,Nason等。 2018(提交)。假设SBP解码器的性能优于阈值 即使在嵌入式设备上,也可以在闭环多个手指任务中穿越解码器。第二个目的 目的是使用嵌入式神经研究手肌肉的闭环功能电刺激 信号处理器和非人类灵长类动物中的网络神经假体。迄今为止,网络 Case Western Reserve University开发的神经假体无法提供直观的倍数 手指控制到宫颈脊髓损伤患者。假设需要大脑界面 使网络神经假体直观,但还没有完全植入的解决方案。设备来自 第一个目的将用于呈现可植入的手神经假发,准备人类临床试验。这 这项工作的贡献有望是可植入的,直观的,脑控制的功能电气 刺激手神经假体以使脊髓受伤的患者有一些独立性。这个贡献 将会很重要 时间使用。研究人员认为,拟议的研究具有创新性,因为它是第一个系统 能够使用比标准较小的数量级的功率来获取特定于单个单元的信号。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Ross Nason-Tomaszewski其他文献

Samuel Ross Nason-Tomaszewski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Ross Nason-Tomaszewski', 18)}}的其他基金

Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
  • 批准号:
    10680206
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
Reanimating paralyzed hands using an implantable, brain-controlled functional electrical stimulation neuroprosthesis
使用可植入的、大脑控制的功能性电刺激神经假体使瘫痪的手复活
  • 批准号:
    9912637
  • 财政年份:
    2019
  • 资助金额:
    $ 3.84万
  • 项目类别:

相似国自然基金

基于排尿控制传入信息生成并传递的针刺调节膀胱兴奋性的效应研究
  • 批准号:
    82174516
  • 批准年份:
    2021
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
基于排尿控制传入信息生成并传递的针刺调节膀胱兴奋性的效应研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
膀胱癌用纳米磁性铁氧体/卡介苗/温敏凝胶集成材料的靶向贴壁和缓释功能研究
  • 批准号:
    30870610
  • 批准年份:
    2008
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
仿生蚯蚓爬行机构设计方法研究
  • 批准号:
    50575228
  • 批准年份:
    2005
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Brain-wide transcriptional profiling after spinal cord injury
脊髓损伤后全脑转录谱分析
  • 批准号:
    10827193
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
Evaluation of genetic and metabolic markers in the development of urinary urgency incontinence
尿急性尿失禁发生过程中遗传和代谢标志物的评估
  • 批准号:
    10591708
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
A randomized, sham-controlled clinical trial evaluating individualized neuromodulation of cortical regions involved in neurogenic overactive bladder in Multiple Sclerosis
一项随机、假对照临床试验,评估多发性硬化症患者神经源性膀胱过度活动症相关皮质区域的个体化神经调节
  • 批准号:
    10560461
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
Characterization of Hypogastric Afferent Pathway Involved in Urinary Bladder Function and Dysfunction
参与膀胱功能和功能障碍的下腹传入通路的特征
  • 批准号:
    10711706
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
Research Career Scientist for Naren Banik, PhD
Naren Banik 博士的研究职业科学家
  • 批准号:
    10593090
  • 财政年份:
    2022
  • 资助金额:
    $ 3.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了