Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
基本信息
- 批准号:9442869
- 负责人:
- 金额:$ 33.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAffectAlzheimer&aposs DiseaseAngiotensin IIAstrocytesAutomobile DrivingBilateralBlood PressureBlood VesselsBrainCaliberCarotid StenosisCerebrovascular CirculationCerebrovascular systemCerebrumChelating AgentsChronicClinicClinicalCommon carotid arteryCommunicationCouplingDataDevelopmentDiseaseElectrophysiology (science)Energy SupplyEquilibriumEventGLAST ProteinGiant CellsGlucoseGlutamatesGoalsHomeostasisHyperemiaHypertensionImpaired cognitionImpairmentIn VitroInflammationInterneuron functionInterneuronsLeadLinkLocationMaintenanceMeasurementMeasuresMediatingMembrane PotentialsModalityModelingMonitorMusNeurodegenerative DisordersNeuronsOxidative StressOxygenPathologyPathway interactionsPerfusionPharmacologyPhysiologicalPopulationProcessRegulationRestRiskSignal TransductionSliceStrokeSynapsesSynaptic TransmissionTestingVascular DiseasesVascular resistanceblood perfusioncerebral hypoperfusioncerebrovascularconstrictionenergy balanceexcitotoxicityexperimental studyhemodynamicshippocampal pyramidal neuronhypoperfusionimprovedin vivointerdisciplinary approachinterestneuronal excitabilityneurovascular couplingneurovascular unitnovelparenchymal arteriolespressurerecruitresponse
项目摘要
While much effort has been devoted to the understanding of mechanisms linked to activity-evoked changes in
cerebral blood flow (CBF) namely, functional hyperemia and neurovascular coupling, less is understood about
the processes controlling basal CBF and resting neuronal activity. Considering that chronic brain hypoperfusion
contributes to cognitive impairments our group is interested in studying the cellular mechanisms by which
changes in steady-state vascular tone, and thus perfusion, affect resting neuronal function. Our central
hypothesis is that constitutive mechanisms defining physiological vasculo-glial-neuronal coupling (VGNC) are
impaired in disease. Using a multidisciplinary approach we will address the following three aims: Aim1: Test the
hypothesis that aberrant astrocytes Ca2+ signaling in disease impairs VGNC. Astrocytes constitutively
integrate perfusion status to the brain and, through the release of gliotransmitter signals, adjust resting neuronal
activity accordingly. Impairments in VGNC places the brain at risk for glutamate excitotoxicity, inflammation and
oxidative stress. Using GLAST-CreERT2; R26-lsl-GCaMP3 mice (in vivo and in vitro) we will measure astrocytic
Ca2+ events in response to parenchymal arteriole vascular reactivity changes evoked by ↑or↓ in lumen
flow/pressure in brain slices from control and cerebral hypoperfused (bilateral common carotid artery stenosis)
mice. A pharmacological approach will be used to define key signal mechanisms (i.e. P2Y1 and TRPV4 channel)
mediating VGNC. Aim2. Test the hypothesis that changes in vascular reactivity are directly associated
with changes in resting cortical pyramidal neuron activity. Optimal energy balance requires that the degree
of neuronal activity be properly matched with blood perfusion. Using in vivo and in vitro approaches, we will
determine how pressure/flow parenchymal arteriole diameter changes impact resting neuronal activity in control
mice and in models of vascular disease using Angiotensin II-dependent hypertension and cerebral
hypoperfusion. In vitro: measurements of arteriolar diameter, neuronal membrane potential, firing rates and
synaptic currents are obtained before, during and after a hemodynamic challenge (e.g. ↑or↓ flow/pressure)
evoked to pressurized PA. In vivo: resting neuronal activity in response to systemic-evoked changes in blood
pressure will be assessed. Aim3. Test the hypothesis that changes in vascular reactivity recruit, via an
astrocyte Ca2+-dependent pathway, GABAergic interneurons to regulate cortical neuronal networks.
Using simultaneous parenchymal arteriole diameter changes with electrophysiological neuronal activity
recordings we will determine the effect pressure/flow-evoked parenchymal arteriole vascular reactivity changes
has on cortical GABAergic interneuron function and neuronal networks. Specifically, we will identify the
GABAergic interneuron subtype driving neuronal network responses during VGNC, whether interneuron
responses require astrocyte Ca2+ changes as an intermediate step and whether interneuron responses are
altered in disease conditions.
1
尽管人们付出了很多努力来理解与活动引起的变化相关的机制
脑血流量(CBF)即功能性充血和神经血管耦合,目前了解较少
考虑到慢性脑灌注不足,控制基础 CBF 和静息神经元活动的过程。
导致认知障碍 我们小组有兴趣研究细胞机制
稳态血管张力的变化以及由此引起的灌注会影响我们的中枢神经功能。
假设是定义生理性血管-胶质-神经元耦合(VGNC)的构成机制是
使用多学科方法,我们将实现以下三个目标: 目标 1:测试
假设疾病中异常的星形胶质细胞 Ca2+ 信号传导会损害 VGNC。
将灌注状态整合到大脑中,并通过释放胶质递质信号来调整静息神经元
VGNC 损伤使大脑面临谷氨酸兴奋性毒性、炎症和相应活动的风险。
我们将使用 GLAST-CreERT2 小鼠(体内和体外)测量星形胶质细胞。
Ca2+ 事件响应管腔内 ↑ 或 ↓ 引起的实质小动脉血管反应性变化
对照和脑灌注不足(双侧颈总动脉狭窄)的脑切片中的流量/压力
将使用药理学方法来定义关键信号机制(即 P2Y1 和 TRPV4 通道)。
介导 VGNC 目的2。检验血管反应性变化直接相关的假设。
随着静息皮质锥体神经元活动的变化,最佳的能量平衡需要达到一定程度。
使用体内和体外方法,神经元活动与血液灌注适当匹配。
确定压力/流量实质小动脉直径变化如何影响控制中的静息神经元活动
小鼠以及使用血管紧张素 II 依赖性高血压和脑血管疾病的血管疾病模型
体外灌注不足:测量动脉直径、神经膜电位、放电率和
在血流动力学挑战之前、期间和之后获得突触电流(例如↑或↓流量/压力)
体内加压 PA 引起:静息神经活动响应全身引起的血液变化。
目的 3. 测试血管反应性变化的假设。
星形胶质细胞 Ca2+ 依赖性途径,GABA 能中间神经元调节皮质神经网络。
利用同时发生的实质小动脉直径变化和电生理神经元活动
我们将确定压力/流量引起的实质小动脉血管反应性变化的影响
具体来说,我们将确定皮质 GABA 能中间神经元功能和神经网络。
GABA能中间神经元亚型在 VGNC 期间驱动神经网络反应,无论中间神经元
反应需要星形胶质细胞 Ca2+ 变化作为中间步骤,以及中间神经元反应是否
疾病状况发生改变。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSICA A FILOSA其他文献
JESSICA A FILOSA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JESSICA A FILOSA', 18)}}的其他基金
The impact of blood pressure variability on neurovascular function
血压变异性对神经血管功能的影响
- 批准号:
10745027 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
The impact of blood pressure variability on neurovascular function
血压变异性对神经血管功能的影响
- 批准号:
10419670 - 财政年份:2021
- 资助金额:
$ 33.25万 - 项目类别:
Inverse neurovascular coupling in the hypothalamus and its role in positive feedback regulation of Vasopressin neurons in health and disease
下丘脑的逆神经血管耦合及其在健康和疾病中加压素神经元正反馈调节中的作用
- 批准号:
10391639 - 财政年份:2021
- 资助金额:
$ 33.25万 - 项目类别:
Inverse neurovascular coupling in the hypothalamus and its role in positive feedback regulation of Vasopressin neurons in health and disease
下丘脑的逆神经血管耦合及其在健康和疾病中加压素神经元正反馈调节中的作用
- 批准号:
10531928 - 财政年份:2021
- 资助金额:
$ 33.25万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
9884817 - 财政年份:2017
- 资助金额:
$ 33.25万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
10117289 - 财政年份:2017
- 资助金额:
$ 33.25万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
9311373 - 财政年份:2017
- 资助金额:
$ 33.25万 - 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
- 批准号:
7841408 - 财政年份:2009
- 资助金额:
$ 33.25万 - 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
- 批准号:
7806456 - 财政年份:2007
- 资助金额:
$ 33.25万 - 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
- 批准号:
8059688 - 财政年份:2007
- 资助金额:
$ 33.25万 - 项目类别:
相似国自然基金
遗传变异调控可变多聚腺苷酸化影响胰腺癌风险的分子流行病学研究
- 批准号:82373663
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
选择性多聚腺苷酸化关联的遗传变异对肺腺癌发病风险的影响及机制研究
- 批准号:82273715
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
腺苷异常积累影响糖尿病伤口修复的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
非小细胞肺癌肿瘤微环境中CD39+CD69+终末CD8+T细胞通过腺苷通路影响Th细胞功能的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DNA甲基化对选择性多聚腺苷酸化的影响及在肝癌复发中的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
相似海外基金
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
The Role of m6A-RNA Methylation in Memory Formation and Recall and Its Modulation and Influence on Long-Term Outcomes as a Consequence of Early Life Lead Exposure
m6A-RNA 甲基化在记忆形成和回忆中的作用及其对早期铅暴露对长期结果的影响
- 批准号:
10658020 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
The role and mechanism of RNA m6A modification in the pathogenesis and drug-resistance of prostate cancer
RNA m6A修饰在前列腺癌发病及耐药中的作用及机制
- 批准号:
10638634 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
YTHDF3 as a critical regulator of cardiac function
YTHDF3 作为心脏功能的关键调节因子
- 批准号:
10676427 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别: