Inverse neurovascular coupling in the hypothalamus and its role in positive feedback regulation of Vasopressin neurons in health and disease
下丘脑的逆神经血管耦合及其在健康和疾病中加压素神经元正反馈调节中的作用
基本信息
- 批准号:10531928
- 负责人:
- 金额:$ 67.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:ASIC channelAcuteAddressAreaAstrocytesAutomobile DrivingBlood VesselsBlood flowBrainBrain regionCannulationsCardiometabolic DiseaseCardiovascular DiseasesCellsCharacteristicsChronicDataDiseaseDorsalElectrophysiology (science)FeedbackFunctional disorderGlucoseGlutamate TransporterHealthHeart failureHomeostasisHypertensionHypothalamic structureHypovolemiaHypovolemicsHypoxiaImageIsotonic ExerciseKnowledgeLinkMasksMeasurementMeasuresMediatingModalityModelingMolecular TargetMonitorNeuronsNeuropeptidesNeurosecretory SystemsNitric OxideOperative Surgical ProceduresPathologicPeripheralPhysiologicalPhysiological ProcessesPopulationProcessRat TransgeneRegulationResponse to stimulus physiologyRodent ModelRoleSensorySignal TransductionSodium ChlorideStimulusSystemTechniquesTimeTissuesVasodilationVasopressinsViral VectorVisualizationWorkadeno-associated viral vectorarteriolecellular targetingdesigner receptors exclusively activated by designer drugshypoperfusionin vivoinnovationinterdisciplinary approachneurotransmissionneurovascular couplingnovelnovel strategiespatch clamppharmacologicresponsesupraoptic nucleustherapeutic targettwo-photonvasoconstriction
项目摘要
Neurovascular coupling (NVC) links increases in neuronal activity with a rapid and spatially restricted increase
in local blood flow. Knowledge on the cellular mechanisms driving NVC has been focused on transient
exteroceptive sensory stimulation and limited to superficial dorsal brain areas (cortex). Thus, less is understood
on NVC dynamics of deeper brain regions, which can be activated by slow, sustained, and widespread stimuli
(e.g., physiological disturbances of bodily homeostasis). Derangement in homeostatic processes is a key driver
of pathological mechanisms in prevalent diseases such as neurohumoral activation in heart failure (HF). To
address this critical gap in our knowledge, we developed a novel experimental approach that enables
interoceptive-induced NVC during a challenge to bodily homeostasis. Our preliminary data show that contrary to
the canonical NVC response, a systemic and physiological homeostatic challenge (acute salt-loading)
progressively increased vasopressin (VP) neuronal firing, evoked activity-dependent vasoconstriction and
decreased local blood flow in the hypothalamic supraoptic nucleus (SON). The salt-induced inverse NVC (iNVC)
response was slow, sustained and widespread, and mediated by the dendritic release of VP within the SON.
iNVC resulted in local tissue hypoxia, which evoked further excitation of VP neurons. Based on these
observations, we hypothesize that iNVC is a physiological process that contributes to positive feedback
modulation of the VP neuronal population so that the physiological disturbance can be efficiently corrected. Still,
the precise signaling mechanisms and cellular targets mediating this novel physiological modality of NVC, and
more importantly, whether an aberrant iNVC response contributes to exacerbated VP neuronal activity
characteristic of prevalent cardiometabolic diseases, such as HF, remains unknown. Using a multidisciplinary
approach, in Aim 1 we will elucidate the precise signaling mechanisms and cellular targets mediating activity-
dependent iNVC in the SON (neuron-to-vessel signaling). In Aim 2, we will determine the mechanisms and
targets by which the iNVC evokes the positive feedback modulation of VP neuronal firing activity (vasculo-to-
neuron signaling). Finally, in Aim3, we will elucidate mechanisms contributing to exacerbated iNVC-mediated
positive feedback regulation of VP neurons in a disease state (HF). Both in vivo and ex vivo novel approaches
(2-photon imaging, patch-clamp electrophysiology, and ex vivo cannulation of SON arterioles) will be used in
novel transgenic rat models that enable visualization (eGFP) and manipulation (opto- and chemogenetically) of
VP neurons in the SON. The activation of acid-sensing ion channels (ASIC) and modulation of astrocyte
glutamate transporters will be investigated as key molecular targets. We expect results from this work to
contribute to a better understanding of fundamental mechanisms underlying NVC responses in different brain
regions and under different activity-dependent modalities. Moreover, we anticipate our studies to unveil novel
pathological mechanisms and therapeutic targets for the treatment of highly prevalent cardiometabolic diseases.
1
神经血管耦合(NVC)将神经元活动的增加与快速且空间受限的增加联系起来
在局部血流中。关于驱动 NVC 的细胞机制的知识一直集中在瞬态
外感受感觉刺激仅限于浅表背侧大脑区域(皮质)。所以理解的比较少
深层大脑区域的 NVC 动态,可以通过缓慢、持续和广泛的刺激激活
(例如,身体稳态的生理紊乱)。稳态过程紊乱是一个关键驱动因素
常见疾病的病理机制,例如心力衰竭(HF)中的神经体液激活。到
为了解决我们知识中的这一关键差距,我们开发了一种新颖的实验方法,该方法能够
在身体稳态受到挑战期间内感受诱发的 NVC。我们的初步数据显示,与
典型的 NVC 反应,一种全身性和生理性稳态挑战(急性盐负荷)
逐渐增加的加压素(VP)神经元放电,诱发活动依赖性血管收缩和
下丘脑视上核(SON)局部血流量减少。盐诱导逆NVC(iNVC)
反应缓慢、持续且广泛,并由 SON 内 VP 的树突释放介导。
iNVC 导致局部组织缺氧,从而引起 VP 神经元的进一步兴奋。基于这些
根据观察,我们假设 iNVC 是一个有助于正反馈的生理过程
调节 VP 神经元群,从而有效纠正生理紊乱。仍然,
介导这种新型 NVC 生理模式的精确信号机制和细胞靶标,以及
更重要的是,异常的 iNVC 反应是否会导致 VP 神经元活动加剧
流行的心脏代谢疾病(例如心力衰竭)的特征仍然未知。使用多学科
方法,在目标 1 中,我们将阐明精确的信号传导机制和介导活动的细胞靶点 -
SON(神经元到血管信号传导)中依赖的 iNVC。在目标 2 中,我们将确定机制和
iNVC 激发 VP 神经元放电活动(血管到神经元)的正反馈调节的目标
神经元信号)。最后,在 Aim3 中,我们将阐明导致 iNVC 介导的恶化的机制
疾病状态(HF)下 VP 神经元的正反馈调节。体内和离体新方法
(2 光子成像、膜片钳电生理学和 SON 小动脉的离体插管)将用于
新型转基因大鼠模型,可实现可视化(eGFP)和操作(光遗传学和化学遗传学)
SON 中的 VP 神经元。酸敏感离子通道 (ASIC) 的激活和星形胶质细胞的调节
谷氨酸转运蛋白将作为关键分子靶点进行研究。我们期望这项工作的结果
有助于更好地理解不同大脑中 NVC 反应的基本机制
区域和不同的活动依赖模式。此外,我们预计我们的研究将揭示新颖的
治疗高度流行的心脏代谢疾病的病理机制和治疗靶点。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSICA A FILOSA其他文献
JESSICA A FILOSA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JESSICA A FILOSA', 18)}}的其他基金
The impact of blood pressure variability on neurovascular function
血压变异性对神经血管功能的影响
- 批准号:
10745027 - 财政年份:2023
- 资助金额:
$ 67.19万 - 项目类别:
The impact of blood pressure variability on neurovascular function
血压变异性对神经血管功能的影响
- 批准号:
10419670 - 财政年份:2021
- 资助金额:
$ 67.19万 - 项目类别:
Inverse neurovascular coupling in the hypothalamus and its role in positive feedback regulation of Vasopressin neurons in health and disease
下丘脑的逆神经血管耦合及其在健康和疾病中加压素神经元正反馈调节中的作用
- 批准号:
10391639 - 财政年份:2021
- 资助金额:
$ 67.19万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
9884817 - 财政年份:2017
- 资助金额:
$ 67.19万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
10117289 - 财政年份:2017
- 资助金额:
$ 67.19万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
9442869 - 财政年份:2017
- 资助金额:
$ 67.19万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
9311373 - 财政年份:2017
- 资助金额:
$ 67.19万 - 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
- 批准号:
7841408 - 财政年份:2009
- 资助金额:
$ 67.19万 - 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
- 批准号:
7806456 - 财政年份:2007
- 资助金额:
$ 67.19万 - 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
- 批准号:
8059688 - 财政年份:2007
- 资助金额:
$ 67.19万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
- 批准号:
10522141 - 财政年份:2022
- 资助金额:
$ 67.19万 - 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
- 批准号:
10652655 - 财政年份:2022
- 资助金额:
$ 67.19万 - 项目类别:
Opioid-induced potentiation of the exercise pressor reflex via acid-sensing ion channels (ASIC3) in health and simulated peripheral artery disease
阿片类药物通过酸敏感离子通道 (ASIC3) 在健康和模拟外周动脉疾病中诱导运动升压反射增强
- 批准号:
10593184 - 财政年份:2021
- 资助金额:
$ 67.19万 - 项目类别:
Opioid-induced potentiation of the exercise pressor reflex via acid-sensing ion channels (ASIC3) in health and simulated peripheral artery disease
阿片类药物通过酸敏感离子通道 (ASIC3) 在健康和模拟外周动脉疾病中诱导运动升压反射增强
- 批准号:
10230430 - 财政年份:2021
- 资助金额:
$ 67.19万 - 项目类别:
Inverse neurovascular coupling in the hypothalamus and its role in positive feedback regulation of Vasopressin neurons in health and disease
下丘脑的逆神经血管耦合及其在健康和疾病中加压素神经元正反馈调节中的作用
- 批准号:
10391639 - 财政年份:2021
- 资助金额:
$ 67.19万 - 项目类别: