Developing Infrared 'FRET' Analogs to Capture Molecular Snapshots through Non-equilibrium 2D IR Spectroscopy of Recognition and Self-Assembly in Biologically Relevant Systems
开发红外“FRET”类似物,通过生物相关系统中的非平衡二维红外光谱识别和自组装捕获分子快照
基本信息
- 批准号:9730143
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAmplifiersAutoimmune DiseasesBiologicalCoupledCrystallizationDropsEquipmentEventEvolutionFluorescence Resonance Energy TransferFundingHeadHydrogen BondingIndividualKineticsLabelLasersLeadLipidsLocationLupusLyticMapsMeasurementMeasuresMembraneMethodsMolecularMolecular ConformationMotionParentsPathway interactionsPeptidesPhotonsPhysiologic pulseProteinsPumpRNARNA FoldingReactionResearchResolutionRotationSapphireSideSiteSolubilitySolventsSpectrum AnalysisStructureSystemTechniquesTestingTimeUniversitiesVertebral columnWaterWorkX ray diffraction analysisanalogantimicrobial peptidebasecancer cellchemical bondcostexperimental studyinsightinterestmolecular assembly/self assemblymolecular dynamicsmolecular recognitionnon-Nativeparent grantphotolysisself assemblysingle bondspectroscopic surveytherapeutic developmenttherapeutic targetthree dimensional structuretoolvibration
项目摘要
Project Summary. Despite strong interest, the study of the 3D structures of biomolecules and their dynamics
remain challenging by the inherent difficulty in growing 3D crystals suitable for X-ray diffraction and by their
poor solubility for solution NMR studies. We propose a transient 2D IR approach that will address questions of
conformational dynamics and structural change of backbone and side chain motions directly, especially when
the biomolecule begins in a well-defined initial condition, and then upon short pulse photolysis, evolution of the
resulting structure distributions can be tracked by 2D IR spectroscopy. In the course of this research, a
spectroscopic tool will be developed to map out both structural motions while concurrently providing insight into
the solvent dynamics at each labelled site and how their corresponding locations promote the molecular
recognition and self-assembly through weak associative forces. The fast dynamics during the key structural
events in RNA or antimicrobial peptide (AMP) action will be measured on time scales ranging from single bond
rotational periods (fs-ps) to those required for significant conformational reorganization (ns-ms) by employing
our transient 2D IR methods. Observations in real time of the non-equilibirum dynamics will provide an atomic
level view of how chosen structures traverse reaction paths to stable final states. This information will then be
used to challenge and test cutting edge non-equilibrium molecular dynamics simulations.
The research outlined herein aims to combine techniques (eg. photo-initation, pH-jump, etc.)
traditionally used to determine kinetics in linear spectroscopies with the information package that comes from
probing with 2D IR spectroscopy. 2D IR spectroscopy will afford sufficient structural and time resolution to
generate snapshots of molecular motions along the reaction pathway of specific biological events. In particular,
we will simultaneously measure distances and angles within biomolecules and also detect the local vibrational
dynamics, including H-bond exchange, coupled water dynamics and polar residue field fluctuations, around
each individual probe. By harnessing the strengths of various initiation techniques, we will dissect the side
chain motions and global structural changes responsible for molecular recognition, folding, and molecular
assembly of AMP activity. Furthermore, we will disentangle the loss of hydrogen bonding, base stacking, and
evolving compactness to uncover molecular details of the mechanistic pathway of RNA folding/unfolding.
The broader objective is to obtain a chemical bond scale description of interactions that lead to
productive conformational changes. Although RNA misfolds are believed to be responsible for autoimmune
diseases such as lupus, they are not as well understood as protein misfolds leading to Alzheimer's disease for
example. This work will help uncover the reasons for these non-native folds. Moreover, in regards to AMPs,
some of these lytic peptides may hold the key to destroy cancer cells and mark the way for the development of
therapeutics that can target specific lipid composition.
Administrative Equipment Supplement Justification. As mentioned above, the parent proposal concerns
quasi- or non-equilibrium dynamics of the interactions of peptides with various membrane mimics and RNA
folding/unfolding measured via 2D IR and transient 2D IR nonlinear laser spectroscopy. To perform these
experiments, a Coherent Libra ultrafast Ti:Sapphire amplifier (with 80fs pulses) is utilized to ultimately generate
the mid-IR pulses necessary for the 2D IR photon echo measurements. This equipment supplement is
requested for purchasing a replacement Evolution 30 laser diode head. The Evolution 30 laser diode head is
the major component of the pump laser required for stable amplification of the Coherent Libra femtosecond
laser system. Without efficient amplification, it is impossible to generate the stable femtosecond pulses
necessary for all 2D IR and transient 2D IR measurements relevant to the parent grant (R15GM1224597).
After 5 years, the laser diodes start to fail resulting in a reduction of conversion efficiency eventually leading to
the inability to pump the amplifier system appropriately, ultimately creating instabilities. The original laser
system was purchased with the PI's university startup funds and it was exactly 5 years ago. Thus, due to some
recent drops in overall efficiency and a discussion with the Coherent laser technician, it was agreed that the
laser diode heads are close to the end of their lifetime and a new assembly with installation costing $46,804
was eminent. So, it is with this justification that I am requesting the aforementioned equipment supplement.
项目摘要。尽管人们对生物分子的 3D 结构及其动力学的研究抱有浓厚的兴趣
由于生长适合 X 射线衍射的 3D 晶体的固有困难及其
溶液 NMR 研究的溶解度较差。我们提出了一种瞬态 2D IR 方法,该方法将解决以下问题
直接主链和侧链运动的构象动力学和结构变化,特别是当
生物分子开始于明确的初始条件,然后通过短脉冲光解作用,进化出
由此产生的结构分布可以通过二维红外光谱进行跟踪。在本研究过程中,一个
将开发光谱工具来绘制两种结构运动,同时提供对
每个标记位点的溶剂动力学以及它们相应的位置如何促进分子
通过弱联合力进行识别和自组装。关键结构过程中的快速动态
RNA 或抗菌肽 (AMP) 作用中的事件将在单键范围内的时间尺度上进行测量
通过使用旋转周期(fs-ps)到显着构象重组(ns-ms)所需的周期
我们的瞬态二维红外方法。对非平衡动力学的实时观察将提供原子
所选结构如何穿越反应路径达到稳定最终状态的水平视图。该信息随后将被
用于挑战和测试尖端的非平衡分子动力学模拟。
本文概述的研究旨在将技术(例如光引发、pH 跳跃等)与
传统上用于确定线性光谱中的动力学,其信息包来自
2D IR 光谱探测。二维红外光谱将提供足够的结构和时间分辨率
沿着特定生物事件的反应途径生成分子运动的快照。尤其,
我们将同时测量生物分子内的距离和角度,并检测局部振动
动力学,包括氢键交换、耦合水动力学和极性残留场波动,
每个单独的探头。通过利用各种启动技术的优势,我们将剖析侧面
链运动和全局结构变化负责分子识别、折叠和分子
AMP 活性的组装。此外,我们将解开氢键的损失、碱基堆积和
不断发展的紧凑性以揭示 RNA 折叠/解折叠机制途径的分子细节。
更广泛的目标是获得相互作用的化学键尺度描述,从而导致
生产性构象变化。尽管 RNA 错误折叠被认为是导致自身免疫性疾病的原因
对于狼疮等疾病,人们对它们的了解不如对导致阿尔茨海默氏病的蛋白质错误折叠了解的多。
例子。这项工作将有助于揭示这些非原生折叠的原因。此外,关于 AMP,
其中一些裂解肽可能是摧毁癌细胞的关键,并为癌症的发展指明了道路。
可以针对特定脂质成分的疗法。
行政设备补充理由。如上所述,家长提案涉及
肽与各种膜模拟物和 RNA 相互作用的准或非平衡动力学
通过 2D IR 和瞬态 2D IR 非线性激光光谱测量折叠/展开。为了执行这些
实验中,利用 Coherent Libra 超快钛宝石放大器(具有 80fs 脉冲)最终生成
二维红外光子回波测量所需的中红外脉冲。这个装备补充是
请求购买替换 Evolution 30 激光二极管头。 Evolution 30 激光二极管头是
相干 Libra 飞秒稳定放大所需的泵浦激光器的主要组件
激光系统。如果没有有效的放大,就不可能产生稳定的飞秒脉冲
对于与父授权 (R15GM1224597) 相关的所有 2D IR 和瞬态 2D IR 测量是必需的。
5 年后,激光二极管开始失效,导致转换效率降低,最终导致
无法适当地泵送放大器系统,最终造成不稳定。原来的激光
系统是用PI的大学启动资金购买的,距今整整5年了。因此,由于一些
最近整体效率下降,并与相干激光技术人员进行讨论,一致认为
激光二极管头已接近其使用寿命,新组件的安装成本为 46,804 美元
是杰出的。因此,我正是基于这个理由,要求上述设备的补充。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthesis of 5-Cyano-Tryptophan as a Two-Dimensional Infrared Spectroscopic Reporter of Structure.
- DOI:10.1002/anie.201803849
- 发表时间:2018-06-18
- 期刊:
- 影响因子:0
- 作者:Chalyavi F;Gilmartin PH;Schmitz AJ;Fennie MW;Tucker MJ
- 通讯作者:Tucker MJ
Nanostructured Ni-Cu Electrocatalysts for the Oxygen Evolution Reaction.
- DOI:10.1039/d0cy00427h
- 发表时间:2020-08-07
- 期刊:
- 影响因子:5
- 作者:Gautam RP;Pan H;Chalyavi F;Tucker MJ;Barile CJ
- 通讯作者:Barile CJ
Interspecies Bombolitins Exhibit Structural Diversity upon Membrane Binding, Leading to Cell Specificity.
- DOI:10.1016/j.bpj.2019.02.005
- 发表时间:2019-03
- 期刊:
- 影响因子:3.4
- 作者:Matthew G Roberson;Devin K. Smith;S. White;I. Wallace;M. J. Tucker
- 通讯作者:Matthew G Roberson;Devin K. Smith;S. White;I. Wallace;M. J. Tucker
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew J Tucker其他文献
Matthew J Tucker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew J Tucker', 18)}}的其他基金
Developing Infrared 'FRET' Analogs to Capture Molecular Snapshots through Non-equilibrium 2D IR Spectroscopy of Recognition and Self-Assembly in Biologically Relevant Systems
开发红外“FRET”类似物,通过生物相关系统中的非平衡二维红外光谱识别和自组装捕获分子快照
- 批准号:
9377685 - 财政年份:2017
- 资助金额:
$ 4.68万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别: