Novel membrane remodeling systems in Actinobacteria and their role in antibiotic resistance
放线菌中的新型膜重塑系统及其在抗生素耐药性中的作用
基本信息
- 批准号:9888330
- 负责人:
- 金额:$ 18.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-06 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:Actinobacteria classActinomyces InfectionsAffectAmino AcidsAminoacylationAntibiotic ResistanceAntibioticsAntimicrobial Cationic PeptidesAntimicrobial ResistanceBacteriaBacterial Antibiotic ResistanceBacterial GenomeBiochemicalBioinformaticsBiologicalCationsCell WallCell membraneCell physiologyCellsChargeChemicalsCorynebacteriumCorynebacterium pseudotuberculosisDefense MechanismsDevelopmentDiglyceridesDiphtheriaEnvironmentEnzymesEtiologyEventExhibitsExposure toFirmicutesFoundationsFutureGenus MycobacteriumGoalsHeadHealthHomologous GeneHumanImmune systemIn VitroIndividualInfectionInnate Immune SystemInsectaIntegral Membrane ProteinInvestigationKnock-outLeadLeprosyLipidsLysine-Specific tRNAMass Spectrum AnalysisMediatingMembraneMembrane LipidsMethodsModelingModificationMycobacterium abscessusNatureNocardiaNocardia InfectionsOrganismPathogenesisPathogenicityPathway interactionsPeptidesPermeabilityPharmaceutical PreparationsPhosphatidylglycerolsPhysiologicalPropertyProtein FamilyProteinsProteobacteriaPublic HealthResistanceRhodococcusRhodococcus equiRoleSpecificityStaphylococcus aureusStreptomycesStressSystemTechniquesTestingTransfer RNATuberculosisUrsidae FamilyVariantVirulenceWorkantimicrobialantimicrobial drugantimicrobial peptidebacterial resistancebasecell envelopegenome analysishuman pathogeninnovationmembernovelpathogenresistance factorsresistance mechanism
项目摘要
Bacterial resistance to antimicrobials is among the biggest challenges affecting human health. Many
resistance mechanisms developed by bacteria involve adaptation of cell wall components that lead to
decreased interaction with, or permeability to antimicrobial compounds. One such mechanism uses amino
acids (aa), carried by tRNAs, to aminoacylate phosphatidylglycerol (PG), one of the main constituents of the
bacterial membrane. Since the initial discovery of this pathway, studies have shown that lipid aminoacylation
enzymes (more generally referred to as aminoacyl-phosphatidylglycerol synthases; aaPGSs) are surprisingly
diverse, and have several aa in their repertoire for altering the chemical makeup of bacterial membranes.
Numerous studies have demonstrated that PG aminoacylation enhances bacterial resistance to antibiotics that
target the membrane (such as cationic antimicrobial peptides, CAMPs), as well as the virulence of pathogens
from multiple phyla (i.e., Firmicutes and Proteobacteria). However, lipid modification systems have been
largely ignored in the Actinobacteria, an important bacterial phylum that includes pathogens of major
importance to human health, such as the etiological agents of tuberculosis, diphtheria, nocardiosis, and
actinomycosis. An extensive genome analysis showed that bacteria in this phylum frequently harbor multiple
(up to six) aaPGS homologs, suggesting that Actinobacteria display a high level of functional diversity in their
lipid modification systems. Our preliminary studies validated this hypothesis, leading to discovery of several
novel lipid modifications systems in corynebacteria that are important for antimicrobial resistance and
virulence. A multitude of other lipid-modifying enzymes in Actinobacteria are yet to be described, and we
hypothesize that some of these proteins support novel functions as well. These studies are important because
aaPGSs represent general factors for membrane adaptation and are expressed in species of extreme
importance to human health. Identification of novel lipid modifications will not only increase our understanding
of fundamental bacterial defense mechanisms, but will reveal new targets for development of antimicrobial
compounds.
Our long-term goal is to define the repertoire of lipid modifications across bacterial species and to
characterize their role in cellular physiology, antimicrobial resistance, and pathogenesis. The aims of this
proposal, which will lay the groundwork for future studies, are to i) explore aaPGS homolog diversity in
Actinobacteria and characterize the biochemical functions of representative enzymes from human pathogens
in the genera Mycobacterium, Nocardia, Rhodococcus, and Streptomyces; and ii) determine the role of these
proteins in resistance to CAMPs of the human immune system and other antimicrobial agents.
细菌对抗菌剂的耐药性是影响人类健康的最大挑战之一。许多
细菌开发的抗性机制涉及适应导致的细胞壁成分
与抗菌化合物的相互作用降低或渗透性。一种这样的机制使用氨基
由TRNA携带的酸(AA),氨基酰胺磷脂酰甘油(PG),这是该氨基酰基磷脂酰甘油(PG),这是
细菌膜。自从最初发现该途径以来,研究表明脂质氨基酰基化
酶(通常称为氨基酰基磷脂酰甘油合酶; AAPGSS)是令人惊讶的
各种各样的曲目中有几个AA,以改变细菌膜的化学构成。
许多研究表明,PG氨基酰化增强了对抗生素的细菌抗性,
靶向膜(例如阳离子抗菌肽,营地)以及病原体的毒力
来自多个门(即企业和蛋白质细菌)。但是,脂质修饰系统已经
在静脉细菌中很大程度上忽略了,这是一个重要的细菌门,包括主要的病原体
对人类健康的重要性,例如结核病,白喉,诺卡症和
放线菌病。广泛的基因组分析表明,该门中的细菌经常具有多重
(最多六个)AAPGS同源物,表明肌动杆菌的功能多样性很高
脂质修饰系统。我们的初步研究证实了这一假设,导致了几个
在Corynebacteria中的新型脂质修饰系统对于抗菌耐药性很重要和
毒力。静脉细菌中众多其他脂质修饰酶尚待描述,我们
假设其中一些蛋白质也支持新功能。这些研究很重要,因为
AAPGSS代表膜适应的一般因素,并在极端物种中表达
对人类健康的重要性。新型脂质修饰的识别不仅会增加我们的理解
基本的细菌防御机制,但会揭示出抗菌剂发展的新目标
化合物。
我们的长期目标是定义细菌物种脂质修饰的曲目以及
表征它们在细胞生理,抗菌耐药性和发病机理中的作用。这个目的
提案将为以后的研究奠定基础,是i)探索AAPGS同源性的多样性
静脉细菌并表征人类病原体的代表性酶的生化功能
在分枝杆菌,诺卡氏菌,犀牛和链霉菌中; ii)确定这些作用
对人免疫系统和其他抗菌剂的耐药性的蛋白质。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The MprF homolog LysX synthesizes lysyl-diacylglycerol contributing to antibiotic resistance and virulence.
- DOI:10.1128/spectrum.01429-23
- 发表时间:2023-09-28
- 期刊:
- 影响因子:3.7
- 作者:Gill, Cameron P.;Phan, Christopher;Platt, Vivien;Worrell, Danielle;Andl, Thomas;Roy, Herve
- 通讯作者:Roy, Herve
Synthesis of aminoacylated ergosterols: A new lipid component of fungi
- DOI:10.1016/j.steroids.2021.108823
- 发表时间:2021-03
- 期刊:
- 影响因子:2.7
- 作者:Daisuke Yokokawa;S. Tatematsu;Ryoka Takagi;Yusuke Saga;H. Roy;Frédéric Fischer;H. Becker;T. Kushiro
- 通讯作者:Daisuke Yokokawa;S. Tatematsu;Ryoka Takagi;Yusuke Saga;H. Roy;Frédéric Fischer;H. Becker;T. Kushiro
RNA-dependent sterol aspartylation in fungi.
真菌中 RNA 依赖性甾醇天冬氨酸化。
- DOI:10.1073/pnas.2003266117
- 发表时间:2020
- 期刊:
- 影响因子:11.1
- 作者:Yakobov,Nathaniel;Fischer,Frédéric;Mahmoudi,Nassira;Saga,Yusuke;Grube,ChristopherD;Roy,Hervé;Senger,Bruno;Grob,Guillaume;Tatematsu,Shunsuke;Yokokawa,Daisuke;Mouyna,Isabelle;Latgé,Jean-Paul;Nakajima,Harushi;Kushiro,Tetsuo;Becke
- 通讯作者:Becke
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Herve Roy其他文献
Herve Roy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
海洋放线菌来源的抗感染聚醚抗生素K-41的生物合成研究
- 批准号:31970064
- 批准年份:2019
- 资助金额:56 万元
- 项目类别:面上项目
以基因组信息为指导的深海链霉菌SCSIO T05中活性次级代谢产物挖掘
- 批准号:41706169
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
抗感染土壤源放线菌产抗MDROs新颖大环内酯的结构及突变选择窗研究
- 批准号:81260476
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Post-translocational protein folding in Gram-positive bacteria
革兰氏阳性菌中的易位后蛋白质折叠
- 批准号:
9773401 - 财政年份:2018
- 资助金额:
$ 18.63万 - 项目类别:
Post-translocational protein folding in Gram-positive bacteria
革兰氏阳性菌中的易位后蛋白质折叠
- 批准号:
10461058 - 财政年份:2015
- 资助金额:
$ 18.63万 - 项目类别:
Post-translocational protein folding in Gram-positive bacteria
革兰氏阳性菌中的易位后蛋白质折叠
- 批准号:
10267769 - 财政年份:2015
- 资助金额:
$ 18.63万 - 项目类别:
Post-translocational protein folding in Gram-positive bacteria
革兰氏阳性菌中的易位后蛋白质折叠
- 批准号:
8862793 - 财政年份:2015
- 资助金额:
$ 18.63万 - 项目类别:
Post-translocational protein folding in Gram-positive bacteria
革兰氏阳性菌中的易位后蛋白质折叠
- 批准号:
9223683 - 财政年份:2015
- 资助金额:
$ 18.63万 - 项目类别: