Autophagy and Mechanotransduction in the Trabecular Meshwork
小梁网中的自噬和力转导
基本信息
- 批准号:9756413
- 负责人:
- 金额:$ 43.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAnteriorApplications GrantsAutophagocytosisAutophagosomeBlindnessCell SurvivalCell physiologyCellsCollagenDataDegradation PathwayDepositionDiseaseExtracellular MatrixExtracellular Matrix DegradationEye MovementsFailureFibrosisFunctional disorderGlaucomaHomeostasisInjuryLaboratoriesLeadMechanical StressMechanicsMediatingMetabolicModelingMorphologyMusOcular HypertensionOrganellesPathologicPathway interactionsPeriodicityPharmacologyPhysiologic Intraocular PressurePhysiologicalPhysiologyPlayPrimary Open Angle GlaucomaProcessProductionProteinsPublishingRegulationReportingResearchRiskRoleSmooth Muscle Actin Staining MethodStarvationStressStretchingTestingTissue PreservationTissuesTrabecular meshwork structureTransforming Growth Factor betaage relatedbaseclinically significantconnective tissue growth factorcytokinecytotoxicdrug developmentexperimental studygenetic activatorhealinginhibition of autophagymechanical forcemechanotransductionnew therapeutic targetnovelnovel therapeutic interventionnovel therapeuticspreservationpressurepreventrepairedresponsewasting
项目摘要
ABSTRACT
Functional failure of the trabecular meshwork (TM) conventional outflow pathway causes elevation in
intraocular pressure (IOP), thus increasing the risk for developing primary open angle glaucoma (POAG) an
age-related disease second leading cause of irreversible blindness. The homeostatic mechanisms responsible
for IOP regulation and those associated with its alteration in glaucoma remain yet poorly understood.
Because of elevation in IOP and other forces, cells in the trabecular meshwork (TM) are constantly subjected
to mechanical strain. In order to preserve cellular function and regain homeostasis, cells must sense and adapt
to these morphological changes. We and others have already shown that mechanical stress can trigger a
broad range of responses in TM cells; however, very little is known about the strategies that TM cells use to
respond to this stress, so they can adapt and survive.
Autophagy, a lysosomal degradation pathway, has emerged as an important cellular homeostatic mechanism
promoting cell survival and adaptation to a number of cytotoxic stresses. Our laboratory has reported the
activation of autophagy in TM cells in response to static biaxial strain and high pressure. Moreover, our newest
data also suggest the activation of chaperon-assisted selective autophagy, a recently identified tension-
induced autophagy essential for mechanotransduction, in TM cells under cyclic mechanical stress.
We hypothesize that autophagy is part of an integrated response triggered in TM cells in response to strain,
exerting a dual role in repair and mechanotransduction. We further hypothesize that dysregulation of this
response contributes to the increased ECM deposition and stiffness reported in the glaucomatous outflow
pathway. We propose that activation of autophagy can, therefore, represent a novel therapeutic approach for
the treatment of ocular hypertension and glaucoma. To test this hypothesis, we will (1) characterize the
induction of autophagy in TM cells in response to mechanical stress and high pressure and determine its
contribution to the stretch-induced response in TM cells; (2) assess a role of autophagy in modulating the
TGFβ-mediated pro-fibrotic response to mechanical injury, and (3) evaluate the ability of pharmacological
activators of autophagy to decrease ECM deposition and restore outflow pathway function. We anticipate that
completion of this project will definitively contribute to a further understanding of the role of autophagy in
outflow pathway tissue physiology and pathophysiology. Most importantly, our studies have the potential of
identifying a novel therapeutic target for the treatment of ocular hypertension and glaucoma.
抽象的
小梁网格林(TM)常规出口通路的功能故障导致高度
眼内压(IOP),从而增加了发展初级开头青光眼(POAG)的风险
与年龄相关的疾病的不可逆转失明的第二主要原因。负责稳态机制
对于IOP调节和与青光眼改变的调节有关的调节仍然尚未理解。
由于IOP和其他力的升高,小梁网中的细胞(TM)不断受到
到机械应变。为了保留细胞功能并保持体内稳态,细胞必须感知和适应
这些形态学变化。我们和其他人已经表明,机械压力会触发
TM细胞中的广泛反应;但是,关于TM单元使用的策略知之甚少
应对这种压力,因此他们可以适应并生存。
自噬是一种溶酶体降解途径,已成为重要的细胞稳态机制
促进细胞存活并适应许多细胞毒性应激。我们的实验室报告了
响应静态双轴菌株和高压的TM细胞中自噬的激活。而且,我们的最新
数据还表明激活伴侣辅助选择性自噬,最近确定的张力 -
在循环机械应力下TM细胞中的机械转移至关重要的自噬所诱导的自噬。
我们假设自噬是TM细胞中触发的综合响应的一部分,该反应响应于应变,
在修复和机械转导中发挥双重作用。我们进一步假设这是对此的失调
响应有助于增加青光眼出口中报告的ECM沉积和刚度
路径。我们建议自噬的激活可以代表一种新颖的治疗方法
治疗眼高血压和青光眼。为了检验这一假设,我们将(1)表征
响应机械应力和高压诱导TM细胞中自噬的诱导,并确定其
对TM细胞中拉伸诱导反应的贡献; (2)评估自噬在调节
TGFβ介导的对机械损伤的促纤维化反应,(3)评估药理学的能力
自噬的激活剂可减少ECM沉积并恢复出口途径功能。我们预料到这一点
该项目的完成将有助于进一步理解自噬在
出口途径组织生理和病理生理学。最重要的是,我们的研究具有
鉴定出一种新型的热靶标,用于治疗眼高血压和青光眼。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paloma Liton其他文献
Paloma Liton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paloma Liton', 18)}}的其他基金
Autophagy and Retinal Ganglion Cell Death in Glaucoma
青光眼中的自噬和视网膜神经节细胞死亡
- 批准号:
10390035 - 财政年份:2022
- 资助金额:
$ 43.85万 - 项目类别:
Autophagy and Retinal Ganglion Cell Death in Glaucoma
青光眼中的自噬和视网膜神经节细胞死亡
- 批准号:
10706977 - 财政年份:2022
- 资助金额:
$ 43.85万 - 项目类别:
Lysosomal Enzymes in Outflow Pathway Physiology and Pathophysiology
流出途径生理学和病理生理学中的溶酶体酶
- 批准号:
9284304 - 财政年份:2017
- 资助金额:
$ 43.85万 - 项目类别:
Autophagy and Mechanotransduction in the Trabecular Meshwork
小梁网中的自噬和力转导
- 批准号:
10390022 - 财政年份:2016
- 资助金额:
$ 43.85万 - 项目类别:
Autophagy and Mechanotransduction in the Trabecular Meshwork
小梁网中的自噬和力转导
- 批准号:
9147858 - 财政年份:2016
- 资助金额:
$ 43.85万 - 项目类别:
Autophagy and Mechanotransduction in the Trabecular Meshwork
小梁网中的自噬和力转导
- 批准号:
9979962 - 财政年份:2016
- 资助金额:
$ 43.85万 - 项目类别:
Autophagy and Mechanotransduction in the Trabecular Meshwork
小梁网中的自噬和力转导
- 批准号:
10570836 - 财政年份:2016
- 资助金额:
$ 43.85万 - 项目类别:
相似国自然基金
肝胆肿瘤治疗性溶瘤腺病毒疫苗的研制及其临床前应用性探索
- 批准号:82303776
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
莫氏细胞早期异常活化介导的前下托-齿状回环路构建在癫痫发生中的作用研究
- 批准号:82371458
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于MST4-YAP-MYC信号通路的慢痞消调控氧化磷酸化水平治疗胃癌前病变的机制研究
- 批准号:82374292
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
CXCL12趋化CXCR4+/α-SMA+成骨前体细胞促进黄韧带骨化的机制研究
- 批准号:82302745
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紫外光解中间体激活荧光构建亚硝胺及其前体物的新方法和机理研究
- 批准号:82373631
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Creating a region- specific biomolecular atlas of the brain of Alzheimer’s disease
创建阿尔茨海默病大脑区域特定的生物分子图谱
- 批准号:
10516443 - 财政年份:2022
- 资助金额:
$ 43.85万 - 项目类别:
Creating a region- specific biomolecular atlas of the brain of Alzheimer’s disease
创建阿尔茨海默病大脑区域特定的生物分子图谱
- 批准号:
10698158 - 财政年份:2022
- 资助金额:
$ 43.85万 - 项目类别:
Integrating multidimensional genomic data to discover clinically-relevant predictive models-Alzheimer's Supplement
整合多维基因组数据以发现临床相关的预测模型-阿尔茨海默氏症补充品
- 批准号:
10286414 - 财政年份:2021
- 资助金额:
$ 43.85万 - 项目类别:
Neural Network Connectivity of Financial Capacity in Mild Cognitive Impairment
轻度认知障碍中财务能力的神经网络连接
- 批准号:
10599409 - 财政年份:2017
- 资助金额:
$ 43.85万 - 项目类别:
Autophagy and Mechanotransduction in the Trabecular Meshwork
小梁网中的自噬和力转导
- 批准号:
10390022 - 财政年份:2016
- 资助金额:
$ 43.85万 - 项目类别: