Dissection of a neural circuit proposed to underlie hot flush generation

解析潮热产生背后的神经回路

基本信息

  • 批准号:
    9754740
  • 负责人:
  • 金额:
    $ 4.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2020-09-14
  • 项目状态:
    已结题

项目摘要

Abstract Thermoregulation is the ability of homeothermic animals to maintain a steady core body temperature by rapidly responding to changes in the environment. Despite its fundamental nature, our understanding of the neural circuitry underlying thermoregulation is limited. The lack of effective treatments for many disorders of thermoregulation, from hot flushes to various drug- induced hyper- and hypothermias, reflects a lack of knowledge about how and where temperature signals from the environment are converted into compensatory responses. Perhaps the most common disorder of thermoregulation is the development of hot flushes, or periodic and often overwhelming sensations of heat, sweating, and flushing affecting millions of individuals, primarily but not exclusively menopausal women. Here I propose experiments designed to dissect thermoregulatory circuits in the mouse brain while simultaneously testing a proposed model of hot flush generation. The exact mechanism of hot flush generation is currently unknown, though it is associated with a drop in estrogen levels. A leading hypothesis implicates a population of neurons in the arcuate nucleus of the hypothalamus (ARC) co-expressing Kisspeptin, Neurokinin B, and Dynorphin (KNDy) that become hypertrophic in response to estrogen withdrawal and that are thought to project to the preoptic area of the hypothalamus (POA). The POA is well established as the thermoregulatory center of the brain, but the molecular identity of POA neurons underlying temperature regulation is largely unknown. This research proposal has three aims designed to elucidate the molecular identity of neurons comprising a thermoregulatory circuit in mice. Identification of cell-specific neural substrates for thermoregulation will hopefully uncover targets (e.g., receptors) that help to foster the development of novel therapeutics for conditions of dysfunctional thermoregulation and to further our understanding of exactly how temperature signals are converted into compensatory responses. Such knowledge has broad implications not only in thermoregulatory disorders, but also in disorders of general energy balance including those associated with diet.
抽象的 体温调节是恒温动物维持稳定的核心身体的能力 通过快速响应环境变化来调节温度。尽管其基本 本质上,我们对温度调节背后的神经回路的理解是有限的。缺乏 许多体温调节障碍的有效治疗方法,从潮热到各种药物 引起的体温过高和体温过低,反映了缺乏关于如何以及在何处的知识 来自环境的温度信号被转换成补偿响应。也许 最常见的体温调节障碍是潮热或周期性潮热 常常会带来压倒性的热感、出汗和潮红感,影响着数百万人 个人,主要但不限于更年期妇女。在这里我提出实验 旨在剖析小鼠大脑中的温度调节回路,同时测试 提出的潮热产生模型。 热潮红产生的确切机制目前尚不清楚,尽管它与 随着雌激素水平的下降。一个主要的假设表明,神经元中存在着一群神经元。 下丘脑弓状核 (ARC) 共表达 Kisspeptin、Neurokinin B 和 强啡肽 (KNDy) 因雌激素撤退而变得肥大,并且 被认为投射到下丘脑的视前区(POA)。 POA 已十分完善 作为大脑的体温调节中心,但 POA 神经元的分子身份 基本的温度调节在很大程度上是未知的。这项研究计划有三个目标 旨在阐明构成温度调节回路的神经元的分子身份 老鼠。鉴定用于温度调节的细胞特异性神经基质将有望揭示 有助于促进新疗法开发的靶标(例如受体) 温度调节功能失调的研究,并进一步了解温度到底如何变化 信号被转换成补偿响应。这些知识具有广泛的影响 不仅在体温调节障碍中,而且在一般能量平衡障碍中,包括 那些与饮食有关的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Johnson其他文献

Christopher Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Johnson', 18)}}的其他基金

Dissection of a neural circuit proposed to underlie hot flush generation
解析潮热产生背后的神经回路
  • 批准号:
    9258294
  • 财政年份:
    2016
  • 资助金额:
    $ 4.01万
  • 项目类别:

相似国自然基金

小型哺乳动物的温感TRPs 通道及其在体温调节中的作用
  • 批准号:
    31970417
  • 批准年份:
    2019
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
延髓-迷走神经-肠脑环路在束缚-浸水应激致胃肠机能紊乱中的作用
  • 批准号:
    31672286
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
爬行动物空间分布对热环境的响应机制研究
  • 批准号:
    41101411
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
荒漠蜥蜴体温调节的生理生化机制研究
  • 批准号:
    30270194
  • 批准年份:
    2002
  • 资助金额:
    19.0 万元
  • 项目类别:
    面上项目
通过骨组织比较研究探索中生代脊椎动物生理特征的进化
  • 批准号:
    39870112
  • 批准年份:
    1998
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目

相似海外基金

Effects of estrus cycle stages on murine CDI severity
发情周期阶段对小鼠 CDI 严重程度的影响
  • 批准号:
    10625792
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
Neural Substrates Controlling Metabolic and Reproductive State
控制代谢和生殖状态的神经基质
  • 批准号:
    10709217
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
Avoiding Cesarean-induced Obesity Through Hormone Rescue
通过激素拯救避免剖腹产引起的肥胖
  • 批准号:
    10628889
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
Neural Mechanisms of Energy Expenditure-Induced Compensatory Food Intake
能量消耗引起的补偿性食物摄入的神经机制
  • 批准号:
    10735758
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
Calorie Restriction, Body Temperature and Alzheimers Disease
热量限制、体温和阿尔茨海默病
  • 批准号:
    10727319
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了