A cutting edge approach to assessing physical activities occurring on sidewalks/streets
评估人行道/街道上发生的身体活动的前沿方法
基本信息
- 批准号:9755242
- 负责人:
- 金额:$ 19.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAgeAgreementAreaAuditoryBehaviorCanadaCharacteristicsChildChronic DiseaseCommunitiesComplexComputer softwareComputersConsumptionDataData CollectionDevicesDiabetes MellitusEnergy MetabolismEnhancement TechnologyEnvironmental Risk FactorError SourcesExpenditureEyeglassesFunding AgencyFutureGenerationsGeographyGoalsHome environmentHumanHypertensionIndividualInterventionKnowledgeLos AngelesMachine LearningMalignant NeoplasmsMeasurementMeasuresMethodologyMethodsNew York CityObesityOutcomePatient Self-ReportPhysical activityPhysical assessmentPlayProcessPsyche structurePublic HealthResearchResearch PersonnelResourcesRoleRunningSocial EnvironmentSystemTechniquesTechnologyTestingTimeTrainingTransportationTreesWalkingadvanced systemconvolutional neural networkdisorder riskexperiencefallsfollow-uphealthy lifestylehypercholesterolemiaimprovedinnovationinterestnational surveillancenovel strategiesphysical inactivityphysical sciencepractical applicationsuccesstechnology developmentwalkability
项目摘要
Abstract
A considerable proportion of outdoor physical activity is done on sidewalk/streets. For example, we found that
~70% of adults who walked during the previous week used the sidewalks/streets around their homes.
Interventions conducted at geographical levels (e.g., community) and studies examining relationships between
environmental conditions (e.g., traffic) and walking/biking, necessitate a reliable measure of physical activities
performed on sidewalks/streets. The Block Walk Method (BWM) is one of the more common approaches
available for this purpose. Although it utilizes reliable observation techniques and displays criterion validity, it
remains relatively unchanged since its introduction in 2006. It is a non-technical, labor-intensive, first
generation method. Advancing the BWM would contribute significantly to our understanding of physical
activity behavior. Therefore, the objective of the proposed study is to develop and test a new BWM that utilizes
a wearable video device (WVD) and computer video analysis to assess physical activities performed on
sidewalks/streets. The following aims will be completed to accomplish this objective. Aim 1: Improve the
BWM by incorporating a WVD into the methodology. The WVD is a pair of eyeglasses with a high definition
video camera embedded into the frames. We expect the WVD to be a viable option for improving the
acquisition and accuracy of data collected using the BWM. Aim 2: Advance the WVD-enhanced BWM by
applying machine learning and recognition software to automatically extract information on physical activities
occurring on the sidewalks/streets from the videos. Methods: Trained observers (one wearing and one not
wearing the WVD) will walk together at a set pace along predetermined, 1000 ft. sidewalk/street segments
representing low, medium, and high walkable areas. During the walks, the non-WVD observer will use the
traditional BWM to record the number of individuals standing/sitting, walking, biking, and running along the
segments. The WVD observer will only record a video while walking. Later, two investigators will view the
videos to determine the numbers of individuals performing physical activities along the segments. For aim 2,
the video data will be analyzed automatically using multiple deep convolutional neural networks (CNNs) to
determine the number of humans in a segment as well as the type of physical activities being performed. Bland
Altman methods and intraclass correlation coefficients will be used to assess agreement. Potential sources of
error such as occlusions (e.g., trees) will be assessed using moderator analyses. We expect the new approach
will enhance measurement accuracy while reducing the burden of data collection. In the future, we will expand
the capabilities of the WVD-CNNs system to allow for the determination of other characteristics captured by
the videos such as caloric expenditure and environmental conditions. Our long-term goal is to substantially
improve the assessment of physical activity and our understanding of physical activity behavior.
抽象的
在人行道/街道上进行的户外体育锻炼很大一部分。例如,我们发现
在上一周走路的成年人中,约有70%使用房屋周围的人行道/街道。
在地理层面(例如社区)和研究研究之间的研究之间进行的干预措施
环境条件(例如,交通)和步行/骑自行车需要可靠的体育锻炼来衡量
在人行道/街道上表演。块步行方法(BWM)是最常见的方法之一
可用于此目的。尽管它利用可靠的观察技术并显示标准有效性,但
自2006年推出以来,它一直保持相对不变。它是一个非技术,劳动密集型,首先
生成方法。推进BWM将对我们对身体的理解做出重大贡献
活动行为。因此,拟议的研究的目的是开发和测试一个利用的新BWM
可穿戴视频设备(WVD)和计算机视频分析,以评估进行的体育活动
人行道/街道。以下目标将完成以实现这一目标。目标1:改善
BWM通过将WVD纳入方法。 WVD是一对具有高清的眼镜
嵌入到框架中的摄像机。我们希望WVD是改进的可行选择
使用BWM收集的数据的获取和准确性。目标2:推进WVD增强的BWM
应用机器学习和识别软件自动提取有关体育活动的信息
发生在视频中的人行道/街道上。方法:训练有素的观察者(一个穿着,一个不穿
穿着WVD)将以预定的1000英尺/人行道/街道的预定速度一起行走
代表低,中和高步行区。在步行期间,非WVD观察者将使用
传统的BWM记录站立/坐着,散步,骑自行车和沿着的个人数量
细分市场。 WVD观察者只会在步行时录制视频。后来,两名调查人员会看到
视频以确定在细分市场沿线进行体育活动的个人数量。对于目标2,
视频数据将使用多个深层卷积神经网络(CNN)自动分析
确定一个细分市场中的人数以及正在进行的体育活动的类型。平淡
Altman方法和类内相关系数将用于评估一致性。潜在的来源
将使用主持人分析评估诸如遮挡(例如树木)之类的错误。我们期望新方法
将提高测量精度,同时减少数据收集的负担。将来,我们将扩展
WVD-CNNS系统的功能允许确定其他特征
诸如热量支出和环境条件之类的视频。我们的长期目标是实质上
改善对体育活动的评估以及我们对体育活动行为的理解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Validation of the Block Walk Method for Assessing Physical Activity occurring on Sidewalks/Streets.
用于评估人行道/街道上发生的身体活动的街区步行方法的验证。
- DOI:10.3390/ijerph16111927
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Suminski,RichardR;Dominick,GregoryM;Plautz,Eric
- 通讯作者:Plautz,Eric
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Mitchell Dominick其他文献
Gregory Mitchell Dominick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 19.32万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 19.32万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 19.32万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 19.32万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 19.32万 - 项目类别: