Macromolecular interactions controlling the ALA synthases, keystone enzymes that initiate heme biosynthesis
控制 ALA 合成酶(启动血红素生物合成的关键酶)的大分子相互作用
基本信息
- 批准号:9752583
- 负责人:
- 金额:$ 41.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisActive SitesAdoptedAffectAllelesAminolevulinic AcidAnemiaAnimalsBindingBinding ProteinsBinding SitesBiochemicalBiological AssayBiophysicsC-terminalCell Culture TechniquesCellsClpX proteinComplexCoupledDefectDeuteriumDevelopmentDiseaseElementsEnzymesErythrocytesErythroidErythroid CellsErythropoiesisErythropoietic ProtoporphyriaEukaryotaFamilyFeedbackFoundationsGenesGlycineHemeHemoglobinHereditary Sideroblastic AnemiaHumanHydrogenIn VitroInheritedLife Cycle StagesLigand BindingLinkMEL GeneMass Spectrum AnalysisMediatingMitochondriaModelingMolecularMolecular ChaperonesMolecular ConformationMolecular StructureMotorMusMutagenesisMutationN-terminalOrganismOxygenPeptide HydrolasesPeptidesPhenotypePhysical condensationPorphyriasProcessProductionProtein FamilyProtein IsoformsProteinsPyridoxalPyridoxal PhosphateReactionRegulationRoleSignal TransductionSite-Directed MutagenesisStructureSuccinate-CoA LigasesSurfaceTestingVertebratesVitamin B6WorkYeastscofactorcombatdifferential expressiondimerendopeptidase Laenzyme activityexperimental studyferrochelatasegain of functionheme aheme biosynthesisinorganic phosphateinsightknock-downmembermonomermutantnovelnovel therapeutic interventionnovel therapeuticsprotein degradationprotoporphyrin IXsensorsmall moleculesuccinyl-coenzyme Atargeted treatmentunfoldase
项目摘要
Heme is the oxygen-binding ligand of hemoglobin and is an essential cofactor or sensor element in many
proteins. Heme production must be tightly controlled to adequately supply these functions but to avoid
overproduction, as accumulation of free heme and heme precursors is toxic. The first committed step in heme
biosynthesis is the condensation of glycine and succinyl-CoA to yield 5-aminolevulinic acid (ALA). This reaction
is catalyzed by ALA synthase (ALAS), which uses pyridoxal 5ʹ-phosphate (PLP, the active form of vitamin B6)
as an essential cofactor. In animals, there are two differentially expressed ALAS isoforms. ALAS1 is present in
most cells, whereas ALAS2 is an erythroid-specific enzyme that is dramatically upregulated during red cell
development. In humans, mutations in ALAS2 cause two diseases: (1) X-linked sideroblastic anemia (XLSA)
when enzyme activity is too low to support healthy levels of heme production and erythropoiesis and (2)
Erythroid X-linked protoporphyria (XLPP), from gain-of-function ALAS2 mutations that overproduce ALA,
causing build up of toxic heme biosynthetic intermediates. The life cycle of ALAS is tightly regulated at steps
including mitochondrial import and protein turnover. Both these steps are feedback controlled by heme-binding.
Enzyme activity (and/or stability) is also regulated and these processes are affected by interaction with other
enzymes, including Lon protease, succinyl-CoA synthetase (SCS), and perhaps ferrochelatase (FECH), the
final two also critical enzymes in heme synthesis. Importantly, we recently discovered that ALAS activity is also
dramatically stimulated by mitochondrial ClpX (mtClpX), a member of the AAA+ family of protein unfoldases.
The mtClpX energy-dependent unfoldase accelerates incorporation of PLP into ALAS and CLPX depletion
causes anemia in vertebrates. We also solved structures of both PLP-free ALAS (from yeast) and the active
PLP-bound enzyme, which illuminates the conformational changes coupled to PLP incorporation and provides
important information for understanding mtClpX-promoted loading of PLP. These structures also provide the
first observation of the eukaryotic-specific regulatory C-terminal domain of the enzyme. This domain structure
suggests testable mechanisms to explain the XLPP mutations and contains the binding site for SCS, which we
will further study. Continuing to investigate how mtClpX physically interacts with ALAS and to test models for
the mechanism of PLP-loading holds promise for uncovering a link between mtClpX-ALAS2 interactions and
some classes of XLSA alleles. In another recent, exciting breakthrough, our collaborators discovered a
dominant human CLPX mutation that appears to hyperactivate ALAS, leading to mtClpX-linked erythropoietic
protoporphyria (EPP). The mechanistic basis of this disease will be scrutinized at the molecular, structural and
cellular level. Thus, by probing the complex mechanisms that control ALAS enzymes we will elucidate new
molecular means of regulation. We believe that this work, in turn, will inspire novel therapeutic strategies for
combating the debilitating illnesses caused by misregulated ALAS.
血红素是血红蛋白的氧结合配体,是许多疾病中重要的辅助因子或传感器元件。
必须严格控制血红素的产生,以充分提供这些功能,但要避免。
生产过剩,因为游离血红素和血红素前体的积累是有毒的。
生物合成是甘氨酸和琥珀酰辅酶A缩合生成5-氨基乙酰丙酸(ALA)。
由 ALA 合酶 (ALAS) 催化,该酶使用 5ʹ-磷酸吡哆醛(PLP,维生素 B6 的活性形式)
作为一种重要的辅助因子,ALAS1 存在于两种差异表达的亚型中。
大多数细胞,而 ALAS2 是一种红细胞特异性酶,在红细胞
在人类中,ALAS2 突变会导致两种疾病:(1) X 连锁铁粒幼细胞贫血 (XLSA)。
当酶活性太低而无法支持血红素生成和红细胞生成的健康水平时以及 (2)
红系 X 连锁原卟啉症 (XLPP),源自过度产生 ALA 的功能获得性 ALAS2 突变,
导致有毒血红素生物合成中间体的积累 ALAS 的生命周期受到严格控制。
包括线粒体输入和蛋白质周转,这两个步骤都是由血红素结合控制的反馈。
酶活性(和/或稳定性)也受到调节,并且这些过程受到与其他物质相互作用的影响
酶,包括 Lon 蛋白酶、琥珀酰辅酶 A 合成酶 (SCS),或许还有亚铁螯合酶 (FECH)
最后两种也是血红素合成的关键酶,重要的是,我们最近发现 ALAS 活性也很重要。
线粒体 ClpX (mtClpX)(蛋白质解折叠酶 AAA+ 家族的成员)可显着刺激。
mtClpX 能量依赖性解折叠酶加速 PLP 掺入 ALAS 和 CLPX 消耗
我们还解析了不含 PLP 的 ALAS(来自酵母)和活性物质的结构。
PLP 结合酶,阐明了与 PLP 掺入相关的构象变化,并提供
这些结构还提供了了解 mtClpX 促进的 PLP 加载的重要信息。
首次观察到该酶的真核特异性调节 C 末端结构域。
提出了可测试的机制来解释 XLPP 突变,并包含 SCS 的结合位点,我们
将继续研究 mtClpX 如何与 ALAS 物理相互作用并测试模型。
PLP 加载机制有望揭示 mtClpX-ALAS2 相互作用与
在最近的另一个令人兴奋的突破中,我们的合作者发现了一些 XLSA 等位基因。
人类 CLPX 突变显性似乎过度激活 ALAS,导致 mtClpX 相关的红细胞生成
原卟啉症(EPP)将从分子、结构和机制方面进行详细研究。
因此,通过探索控制 ALAS 酶的复杂机制,我们将阐明新的机制。
我们相信这项工作反过来将激发新的治疗策略。
对抗因 ALAS 失调引起的衰弱性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANIA A BAKER其他文献
TANIA A BAKER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANIA A BAKER', 18)}}的其他基金
Macromolecular interactions controlling the ALA synthases, keystone enzymes that initiate heme biosynthesis
控制 ALA 合成酶(启动血红素生物合成的关键酶)的大分子相互作用
- 批准号:
10214597 - 财政年份:2017
- 资助金额:
$ 41.94万 - 项目类别:
BASIS OF SUBSTRATE SELECTION BY BACTERIAL ADAPTOR PROTEINS
细菌衔接蛋白选择底物的基础
- 批准号:
8169213 - 财政年份:2010
- 资助金额:
$ 41.94万 - 项目类别:
ADAPTOR-PROTEIN MEDIATED RECOGNITION AND REGULATION OF PROTEIN DEGRADATION
接头蛋白介导的蛋白质降解的识别和调节
- 批准号:
7955083 - 财政年份:2009
- 资助金额:
$ 41.94万 - 项目类别:
STRUCTURE AND FUNCTION OF THE CLPXP ATP-DEPENDENT PROTEASE
CLPXP ATP 依赖性蛋白酶的结构和功能
- 批准号:
7721201 - 财政年份:2008
- 资助金额:
$ 41.94万 - 项目类别:
STRUCTURE AND FUNCTION OF THE CLPXP ATP-DEPENDENT PROTEASE
CLPXP ATP 依赖性蛋白酶的结构和功能
- 批准号:
7182916 - 财政年份:2005
- 资助金额:
$ 41.94万 - 项目类别:
STRUCTURE AND FUNCTION OF THE CLPXP ATP-DEPENDENT PROTEASE
CLPXP ATP 依赖性蛋白酶的结构和功能
- 批准号:
7369492 - 财政年份:2005
- 资助金额:
$ 41.94万 - 项目类别:
STRUCTURE/FUNCTION OF THE CLPXP ATP-DEPENDENT PROTEASE
CLPXP ATP 依赖性蛋白酶的结构/功能
- 批准号:
6972755 - 财政年份:2004
- 资助金额:
$ 41.94万 - 项目类别:
相似海外基金
Macromolecular interactions controlling the ALA synthases, keystone enzymes that initiate heme biosynthesis
控制 ALA 合成酶(启动血红素生物合成的关键酶)的大分子相互作用
- 批准号:
10214597 - 财政年份:2017
- 资助金额:
$ 41.94万 - 项目类别:
Structural Microbiology of Type IV Pilus Retraction
IV 型菌毛回缩的结构微生物学
- 批准号:
7629077 - 财政年份:2000
- 资助金额:
$ 41.94万 - 项目类别: