Conservation and functional-characterization of tumor methylation sites
肿瘤甲基化位点的保护和功能表征
基本信息
- 批准号:9883761
- 负责人:
- 金额:$ 17.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AreaBayesian AnalysisBioconductorCancer EtiologyCellsCessation of lifeClassificationClonal EvolutionCodeColonColorectal CancerColorectal NeoplasmsComputer softwareDNA MethylationDNA analysisDNA sequencingDataData SetEnhancersEpigenetic ProcessEvolutionExhibitsGenesGoalsGrowthHumanIndividualInternetMalignant NeoplasmsMammalian CellMeasuresMethodsMethylationModelingMutationNatureNormal tissue morphologyPathway interactionsPatientsPatternPhenotypeProcessReplication ErrorSample SizeSamplingSideSiteStatistical MethodsTestingTranslatingTranslationsVariantWorkadenomabead chipcolorectal cancer progressiondesigneffective therapyepigenomehuman datainnovationmathematical modelmethod developmentmethylation patternneoplastic cellpersonalized medicinepressuresoftware developmentsuccesstumortumor growthtumorigenesis
项目摘要
We aim to develop statistical methods and software for analysis of DNA methylation data from human colorectal
cancer samples [CRCs] and matched normal tissue. We hypothesize that because epigenetics determines
mammalian cell phenotypes, it will be possible to reconstruct the phenotype of the tumor and its founder cell by
comparing epigenomes sampled from opposite sides of the same CRC. Therefore, we will rank genes or cell
pathways according to the degree of conservation of methylation status they exhibit, indicating which are likely
to be most important during tumor growth.
We propose three innovations to accomplish these goals. First, we exploit a new Illumina microarray
which can measure methylation at ~850,000 CpG sites, allowing broad coverage of most human genes and
enhancers. We will develop methods to enable us to conduct an analysis of such data. We will demonstrate this
using a test dataset in which we have collected multi-regional sampling data (i.e., data in which we sample from
a number of different parts of the same tumor) for 26 human colorectal tumors, along with paired samples of
normal tissue for 6 of those patients and 9 other colons. Second, we propose a two-pronged attack designed to
assess whether each CpG site should be classified as ‘stable’ or ‘unstable’ with respect to the degree of CpG
variation permitted there. In Aim 1 we propose methods that are purely statistical in nature; In Aim 2 we propose
methods that will be built upon an explicit mathematical model for tumor evolution. We will compare and contrast
their results. An additional advantage of the second approach is that it will also allow us to reconstruct the
epigenome of the founder cell.
Third, we will assess conservation of variation within genes or pathways to assess which are most
important during growth---pathways with smaller methylation differences between tumor sides are likely to be
more important and under selective pressures.
The significance of the proposed studies is that we will develop new methods to extract epigenetic
information from multi-regional tumor sampling. Such data are rare at the moment, but will soon be routinely
collected. For that reason, in our fourth aim we propose to produce and freely distributed software and Shiny
applications.
Our long-term goal is to facilitate more personalized and effective therapies that specifically target
pathways or genes most important to the growth of individual CRCs. The development of methods and software
to characterize variation in methylation patterns from multi-regional tumor sampling, and relate that to
genes/pathways will facilitate this process, and the relative ease of obtaining epigenetic information using
methylation arrays should allow widespread translation to other tumor types.
我们旨在开发统计方法和软件,以分析人类结直肠的DNA甲基化数据
癌症样品[CRC]并匹配正常组织。我们假设这是因为表观遗传学认识
哺乳动物细胞表型,可以通过
比较从同一CRC的相对侧采样的表观人体工学。因此,我们将对基因或细胞进行排名
根据他们暴露的甲基化状态的保存程度,途径可能表明
在肿瘤生长中最重要。
我们提出三项创新来实现这些目标。首先,我们利用新的Illumina微阵列
它可以在约850,000个CpG位点测量甲基化,从而可以广泛覆盖大多数人类基因和
增强剂。我们将开发方法以使我们能够对此类数据进行分析。我们将证明这一点
使用我们收集的多区域采样数据的测试数据集(即,我们从中采样了
26种人类有色肿瘤的同一肿瘤的许多不同部分)以及配对的样品
其中6例患者和其他9个结肠的正常组织。其次,我们提出了一场两管齐的攻击
评估每个CPG站点应将CPG程度归类为“稳定”还是“不稳定”
那里允许的变化。在目标1中,我们提出了纯粹是统计本质的方法;在AIM 2中,我们提出了
将建立在肿瘤进化的显式数学模型上的方法。我们将比较和对比
他们的结果。第二种方法的另一个优点是,它还允许我们重建
创始人细胞的表观基因组。
第三,我们将评估基因或评估途径内的变异的保护,这是最多的
在生长过程中很重要 - 肿瘤侧之间甲基化差异较小的途径可能是
更重要的和选择性压力。
拟议的研究的意义在于,我们将开发提取表观遗传的新方法
来自多区域肿瘤采样的信息。此类数据目前很少见,但很快将是常规
集。因此,在我们的第四个目标中,我们建议生产和自由分发软件和闪亮
申请。
我们的长期目标是促进更个性化和有效的疗法,专门针对
途径或基因对单个CRC的生长最重要。方法和软件的开发
表征来自多区域肿瘤采样的甲基化模式的变化,并将其与
基因/途径将促进这一过程,并相对易于使用表观遗传信息
甲基化阵列应允许宽度转换为其他肿瘤类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Marjoram其他文献
Paul Marjoram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Marjoram', 18)}}的其他基金
Core C: Computation and Software Development Core
核心C:计算和软件开发核心
- 批准号:
10411245 - 财政年份:2016
- 资助金额:
$ 17.94万 - 项目类别:
Core C: Computation and Software Development Core
核心C:计算和软件开发核心
- 批准号:
10707475 - 财政年份:2016
- 资助金额:
$ 17.94万 - 项目类别:
Design and Analysis of 2 Stage GWAS Study Using Next Generation Sequence Technolo
使用下一代测序技术的 2 阶段 GWAS 研究的设计和分析
- 批准号:
8006910 - 财政年份:2010
- 资助金额:
$ 17.94万 - 项目类别:
Statistical Methods for Relating Sequence Data to Phenotype
将序列数据与表型相关的统计方法
- 批准号:
7893074 - 财政年份:2008
- 资助金额:
$ 17.94万 - 项目类别:
Statistical Methods for Relating Sequence Data to Phenotype
将序列数据与表型相关的统计方法
- 批准号:
7691830 - 财政年份:2008
- 资助金额:
$ 17.94万 - 项目类别:
Statistical Methods for Relating Sequence Data to Phenotype
将序列数据与表型相关的统计方法
- 批准号:
8064560 - 财政年份:2008
- 资助金额:
$ 17.94万 - 项目类别:
相似国自然基金
基于序贯贝叶斯分析的低事例率辐射成像中图像快速识别方法研究
- 批准号:12305346
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
带纵向复杂数据类型的混合成员模型的贝叶斯分析
- 批准号:12301368
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
带信息终止事件的复发事件数据变换模型的贝叶斯分析
- 批准号:12301332
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
贝叶斯框架下基于采样算法的弹性介质全波形反演与不确定性分析
- 批准号:42374138
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
隐马尔可夫变系数回归模型的贝叶斯分析
- 批准号:12361061
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Bayesian Network Biomarker Selection in Metabolomics Data
代谢组学数据中的贝叶斯网络生物标志物选择
- 批准号:
10228099 - 财政年份:2017
- 资助金额:
$ 17.94万 - 项目类别: