ENGINEERING ORGANELLE FUNCTION TO REWIRE CANCER CELL METABOLISM
改造细胞器功能以重新连接癌细胞代谢
基本信息
- 批准号:8756590
- 负责人:
- 金额:$ 235.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenocarcinoma CellAutophagocytosisAutophagosomeBiochemical ReactionBiosensorBuffersCellsCouplingCuesDrug TargetingEatingEngineeringFoundationsGoalsGrowthHomeostasisImageIn VitroInborn Errors of MetabolismKnowledgeLocationLysosomesMalignant NeoplasmsMapsMeasuresMetabolicMetabolismModelingNormal CellNutrientOrganellesOrganismPancreatic Ductal AdenocarcinomaPopulationPreparationProcessProtein KinaseReactionResolutionRoleSourceSurfaceSystemTechnologyTestingTimeTissuesTubeVariantWorkanticancer researchcancer celldetection of nutrientgenetic regulatory proteininnovationmass spectrometermetabolic abnormality assessmentneoplastic cellnew technologynew therapeutic targetnovelnovel strategiespublic health relevancereconstitutionresponsescale uptool
项目摘要
DESCRIPTION (provided by applicant): A cell executes well over 10E8 simultaneous biochemical reactions at hundreds of different locations during every second of its lifetime. Coordinating these innumerable processes is a formidable task that is essential to the correct functioning of each tissue and the entire organism. In response to ever changing internal and external cues, cells have evolved mechanisms that can sense nutrient and energy status and, in response, prompt fine-tuned changes in metabolic activity that buffer these variations. Our recent work has highlighted the role of one organelle, the lysosome, as a gate-keeper of metabolic homeostasis. The lysosome can sense and relay variations in cellular nutrient levels to the master growth regulatory protein kinase mTORC1. In turn, mTORC1 governs catabolic reactions within the lysosome that supply the cell with metabolic building blocks and help maintain global nutrient supply. Importantly, dysregulated lysosomal function is the cause of hereditary metabolic disorders, and is emerging as a contributing factor to the progression of some aggressive cancers. Current technologies that employ mass spectrometers or fluorescent biosensors in whole cells or cell populations cannot reach inside the lysosome to identify and measure the hundreds of metabolites that are generated inside it over time. In order to build a comprehensive, systems-level model of how the lysosome regulates cellular metabolism, a reductionist approach that captures essential spatial and temporal features of lysosomal function in a simplified context is needed. Our goal is to develop a novel in vitro system that wil enable the study of metabolism at the single organelle level. In the current proposal, our system will reconstitute the fusion of lysosomes with organelles known as autophagosomes in test tubes or on the surface of coverslips. Imaging at high spatial and temporal resolution, we will dissect the participation of the lysosome in autophagy, a cellular 'self-eat' process that is essential to the homeostasis of both normal and cancer cells. By scaling up this preparation, and coupling it to high throughput metabolite profiling, we will generate a spatial and temporal 'metabolic map' that profiles hundreds of nutrients generated within the lysosome, describes the time course of their buildup and export, and identifies the transport mechanisms that release these nutrients to the cell. Leveraging the spatial and temporal resolution of our system, we will address a major challenge in present-day cancer research- how highly lethal pancreatic ductal adenocarcinoma (PDAC) exploits autophagy to gain a growth and survival advantage in nutrient-poor microenvironments. Using our 'inside knowledge' of the lysosomal metabolome, we will test the hypothesis that autophagy may allow PDAC cells to maintain homeostasis by tapping into large intracellular reservoirs of nutrients, and we will devise novel strategies to deplete these internal nutrient stores. This project will generate novel tools to illuminate the subcellular organization of metabolism, and lay the foundations for innovative ways to rewire cancer cell metabolism.
描述(由申请人提供):细胞在其生命周期中的每一秒都会在数百个不同位置同时执行超过 10E8 个生化反应。协调这些无数的过程是一项艰巨的任务,对于每个组织和整个有机体的正确运作至关重要。为了响应不断变化的内部和外部线索,细胞已经进化出可以感知营养和能量状态的机制,并作为响应,促进代谢活动的微调变化,以缓冲这些变化。我们最近的工作强调了一种细胞器——溶酶体——作为代谢稳态守门人的作用。溶酶体可以感知细胞营养水平的变化并将其传递给主生长调节蛋白激酶 mTORC1。反过来,mTORC1 控制溶酶体内的分解代谢反应,为细胞提供代谢构件并帮助维持整体营养供应。重要的是,溶酶体功能失调是遗传性代谢紊乱的原因,并且正在成为一些侵袭性癌症进展的促成因素。目前在整个细胞或细胞群中使用质谱仪或荧光生物传感器的技术无法到达溶酶体内部来识别和测量随着时间的推移在其内部产生的数百种代谢物。为了建立溶酶体如何调节细胞代谢的全面的系统级模型,需要一种还原论方法,在简化的背景下捕获溶酶体功能的基本空间和时间特征。我们的目标是开发一种新型体外系统,使代谢研究能够在单一细胞器水平上进行。在当前的提案中,我们的系统将在试管或盖玻片表面重建溶酶体与称为自噬体的细胞器的融合。通过高空间和时间分辨率的成像,我们将剖析溶酶体在自噬中的参与,自噬是一种细胞“自我吞噬”过程,对于正常细胞和癌细胞的体内平衡至关重要。通过扩大这种制备过程,并将其与高通量代谢物分析相结合,我们将生成一个空间和时间的“代谢图”,该图描绘了溶酶体内产生的数百种营养物质,描述了它们的积累和输出的时间过程,并确定了运输将这些营养物质释放到细胞的机制。利用我们系统的空间和时间分辨率,我们将解决当今癌症研究中的一个重大挑战——高致死性的胰腺导管腺癌(PDAC)如何利用自噬在营养贫乏的微环境中获得生长和生存优势。利用我们对溶酶体代谢组的“内部知识”,我们将测试自噬可能允许 PDAC 细胞通过利用大量细胞内营养物质库来维持体内平衡的假设,并且我们将设计新的策略来耗尽这些内部营养物质储存。该项目将产生新的工具来阐明代谢的亚细胞组织,并为重新连接癌细胞代谢的创新方法奠定基础。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
The lysosome as a command-and-control center for cellular metabolism.
溶酶体作为细胞代谢的指挥和控制中心。
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Lim, Chun;Zoncu, Roberto
- 通讯作者:Zoncu, Roberto
A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase-Ragulator lysosomal scaffold.
营养诱导的亲和开关通过其 Rag GTPase-Ragulator 溶酶体支架控制 mTORC1 激活。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:21.3
- 作者:Lawrence, Rosalie E;Cho, Kelvin F;Rappold, Ronja;Thrun, Anna;Tofaute, Marie;Kim, Do Jin;Moldavski, Ofer;Hurley, James H;Zoncu, Roberto
- 通讯作者:Zoncu, Roberto
Emerging Roles for the Lysosome in Lipid Metabolism.
- DOI:10.1016/j.tcb.2017.07.006
- 发表时间:2017-11
- 期刊:
- 影响因子:19
- 作者:Thelen AM;Zoncu R
- 通讯作者:Zoncu R
Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex.
RagA/C-Ragulator mTORC1 激活复合物的混合结构。
- DOI:10.1016/j.molcel.2017.10.016
- 发表时间:2017-12-07
- 期刊:
- 影响因子:16
- 作者:Su MY;Morris KL;Kim DJ;Fu Y;Lawrence R;Stjepanovic G;Zoncu R;Hurley JH
- 通讯作者:Hurley JH
The Lysosome as a Regulatory Hub.
溶酶体作为调节中心。
- DOI:10.1146/annurev-cellbio-111315-125125
- 发表时间:2016-10-06
- 期刊:
- 影响因子:11.3
- 作者:Perera RM;Zoncu R
- 通讯作者:Zoncu R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roberto Zoncu其他文献
Roberto Zoncu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roberto Zoncu', 18)}}的其他基金
Molecular Mechanisms of Organelle-based Metabolic Signaling
基于细胞器的代谢信号传导的分子机制
- 批准号:
10623647 - 财政年份:2023
- 资助金额:
$ 235.38万 - 项目类别:
Spatio-temporal regulation of mTORC1 signaling in normal and disease states
正常和疾病状态下 mTORC1 信号传导的时空调节
- 批准号:
10408711 - 财政年份:2019
- 资助金额:
$ 235.38万 - 项目类别:
Spatio-temporal regulation of mTORC1 signaling in normal and disease states
正常和疾病状态下 mTORC1 信号传导的时空调节
- 批准号:
10174962 - 财政年份:2019
- 资助金额:
$ 235.38万 - 项目类别:
Molecular mechanisms for lipid sensing by mTORC1
mTORC1 脂质传感的分子机制
- 批准号:
10393506 - 财政年份:2019
- 资助金额:
$ 235.38万 - 项目类别:
相似国自然基金
基于COX-2-Myc轴探究雷公藤内酯酮介导三阴性乳腺癌细胞自噬性凋亡的作用机制
- 批准号:82304781
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内质网应激相关蛋白调控自噬在双硫仑诱导胰腺癌细胞凋亡中的作用及机制研究
- 批准号:81872426
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
槐耳多糖通过上调三阴性乳腺癌细胞自噬降解Snail/Twist拮抗EMT的作用和机制研究
- 批准号:81802664
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
去势诱导前列腺癌细胞自噬在抗肿瘤免疫反应中的作用及机制研究
- 批准号:31700785
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
三维基质粘弹性影响乳腺癌细胞凋亡和自噬交互作用的力学生物学机制研究
- 批准号:11772088
- 批准年份:2017
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
BCCMA: Overcoming chemoresistance in ovarian cancer: Identification and validation of biomarkers and targetable drivers of platinum resistance
BCCMA:克服卵巢癌的化疗耐药性:铂类耐药的生物标志物和靶向驱动因素的识别和验证
- 批准号:
10585641 - 财政年份:2023
- 资助金额:
$ 235.38万 - 项目类别:
Project 3: The AMPK Autophagy Pathway as a Metabolic Liability in Pancratic Ductal Adenocarcinoma
项目 3:AMPK 自噬途径作为胰腺导管腺癌的代谢负担
- 批准号:
10629065 - 财政年份:2023
- 资助金额:
$ 235.38万 - 项目类别:
ULK1 Inhibitor in Combination with Immune Checkpoint Blockade in PancreaticCancer
ULK1 抑制剂与免疫检查点阻断联合治疗胰腺癌
- 批准号:
10576633 - 财政年份:2022
- 资助金额:
$ 235.38万 - 项目类别:
Mechanisms of YAP1-driven resistance to KRAS-G12C inhibition
YAP1 驱动的 KRAS-G12C 抑制抵抗机制
- 批准号:
10675482 - 财政年份:2022
- 资助金额:
$ 235.38万 - 项目类别:
Sub-100 nm and scalable self-therapeutic nanoparticles to target autophagy in pancreatic cancer
亚 100 nm 且可扩展的自我治疗纳米颗粒可靶向胰腺癌的自噬
- 批准号:
10604147 - 财政年份:2022
- 资助金额:
$ 235.38万 - 项目类别: