Complete atomic dissection of the B. subtilis nitrogen regulatory pathway
枯草芽孢杆菌氮调节途径的完整原子解剖
基本信息
- 批准号:9313913
- 负责人:
- 金额:$ 30.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AmmoniumAnti-Bacterial AgentsAssimilationsAutomobile DrivingBacillus subtilisBindingBiochemicalBiological AssayBiological AvailabilityC-terminalComplexCrystallographyDNADNA BindingDNA Binding DomainDevelopmentDissectionDrug DesignDrug TargetingEnzymesFamilyFeedbackFluorescenceGene Expression RegulationGenesGenetic TranscriptionGleanGlutamate-Ammonia LigaseGlutamineGlutamine-tRNA ligaseGoalsGram-Negative BacteriaGram-Positive BacteriaHumanIn VitroInterventionLifeMacronutrients NutritionMediatingMetabolic PathwayMetabolismMethodsModelingMolecularMolecular ChaperonesMutagenesisN-terminalNitrogenNitrogen Fixation GenesOrganismPathogenicityPathway interactionsPlayProcessProteinsRegulationRegulatory PathwayRoleSignal PathwaySignal TransductionSiteSourceStructural ModelsStructureSystemTailTranscriptional RegulationWorkbiological systemsdata acquisitiondesigndrug developmentimprovedin vivoinhibitor/antagonistinsightnitrogen metabolismnovelpreventprotein structurepublic health relevance
项目摘要
DESCRIPTION (provided by applicant): While automated data acquisition methods have enabled the delineation of regulatory pathways, the detailed molecular mechanisms that drive and coordinate these processes remain unknown or incompletely characterized. The overall goal of this proposal is to deduce, at the molecular level, the mechanisms that control an entire signaling pathway, that of the nitrogen regulatory circuit in the model Gram-positive bacterium B. subtilis. In B. subtilis, the metabolism and assimilation of nitrogen is controlled by an unusua network of proteins, distinct from that used by Gram-negative bacteria, that include the central enzyme of nitrogen metabolism, glutamine synthetase (GS), the global transcription regulators, TnrA and GlnR, and the ammonium transport regulator, GlnK. GS synthesizes glutamine (Q), which is the preferred nitrogen source in B. subtilis, while GInR and TnrA regulate the transcription of all protein-encoding genes involved in nitrogen metabolism. In B. subtilis, GS plays a central role not only in nitrogen assimilation, but also transcription regulation by interacting directly with TnrA and GlnR in its glutamine feedback-inhibited form (GS-Q). During nitrogen excess, GS-Q is formed and binds TnrA to prevent the DNA binding activity of this global activator, while it activates the repressor activity of GlnR by an unknown chaperoning mechanism. During nitrogen poor conditions, GlnK interacts with TnrA to facilitate its ability to bind DNA. Thus, the B. subtilis nitrogen assimilation pathway is highly interconnected, ultimately allowing B. subtilis to detect intracellular nitrogen levels and transmit this signal to effect enzme activity and gene regulation. To date, we have determined the enzymatic mechanism of B. subtilis GS at the atomic level, revealing that its catalytic activity and regulation are distinct among GS proteins. The goals of this project are to perform biochemical, structural and in vivo studies to dissect the regulatory mechanisms that control this nitrogen assimilation pathway. The two, multi-part Specific Aims are as follows: (1) Deduce the molecular mechanisms controlling the GlnR regulatory network including GlnR DNA-binding, its regulation by autoinhibition, and the unique chaperone function of GS. (2) Elucidate the TnrA DNA binding mechanism and its activation by GlnK and inhibition by GS-Q. Notably, GS is an established antibacterial drug target. Thus, the detailed structural information obtained in this proposal will
provide insight into improved drug development as well as provide new targets, such as TnrA and GlnR, for the design of highly specific, antibacterial chemotherapeutics.
描述(由申请人提供):虽然自动数据采集方法已经能够描绘调控途径,但驱动和协调这些过程的详细分子机制仍然未知或不完全表征,该提案的总体目标是在分子水平上进行推断。 ,控制整个信号通路的机制,即模型革兰氏阳性细菌枯草芽孢杆菌中的氮调节回路。在枯草芽孢杆菌中,氮的代谢和同化是由一个不寻常的网络控制的。与革兰氏阴性细菌使用的蛋白质不同,这些蛋白质包括氮代谢的中心酶谷氨酰胺合成酶 (GS)、全局转录调节因子 TnrA 和 GlnR 以及铵转运调节因子 GlnK,合成谷氨酰胺 (Q)。 ,这是枯草芽孢杆菌中的首选氮源,而 GInR 和 TnrA 则调节枯草芽孢杆菌中所有参与氮代谢的蛋白质编码基因的转录。不仅在氮同化中发挥着核心作用,而且还通过与谷氨酰胺反馈抑制形式 (GS-Q) 的 TnrA 和 GlnR 直接相互作用而在转录调节中发挥核心作用,在氮过量期间,GS-Q 形成并与 TnrA 结合以阻止 DNA。该全局激活剂的结合活性,同时它通过未知的陪伴机制激活 GlnR 的阻遏活性,在氮缺乏条件下,GlnK 与 TnrA 相互作用以促进。因此,枯草芽孢杆菌氮同化途径是高度互连的,最终使枯草芽孢杆菌能够检测细胞内氮水平并传递该信号以影响酶活性和基因调控。迄今为止,我们已经确定了酶促机制。该项目的目标是进行生化、结构和体内研究,以剖析其调节机制。控制该氮同化途径的两个、多部分具体目标如下:(1)推断控制GlnR调节网络的分子机制,包括GlnR DNA结合、其通过自抑制的调节以及GS 2的独特伴侣功能。 ) 阐明 TnrA DNA 结合机制及其通过 GlnK 的激活和 GS-Q 的抑制 值得注意的是,GS 是一个已确定的抗菌药物靶标。本提案中获得的结构信息将
提供对改进药物开发的深入了解,并为设计高度特异性的抗菌化疗药物提供新的靶点,例如 TnrA 和 GlnR。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Schumacher其他文献
Maria Schumacher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Schumacher', 18)}}的其他基金
Deciphering fundamental biological processes involving protein-nucleic acid interactions at the molecular level
破译涉及分子水平上蛋白质-核酸相互作用的基本生物过程
- 批准号:
10622948 - 财政年份:2019
- 资助金额:
$ 30.92万 - 项目类别:
Deciphering fundamental biological processes involving protein-nucleic acid interactions at the molecular level
破译涉及分子水平上蛋白质-核酸相互作用的基本生物过程
- 批准号:
10543420 - 财政年份:2019
- 资助金额:
$ 30.92万 - 项目类别:
Deciphering fundamental biological processes involving protein-nucleic acid interactions at the molecular level
破译涉及分子水平上蛋白质-核酸相互作用的基本生物过程
- 批准号:
10319963 - 财政年份:2019
- 资助金额:
$ 30.92万 - 项目类别:
Assembly and partition mechanism of Walker-box based segregation machinery
基于Walker-box的分离机械的组装和分离机构
- 批准号:
8941756 - 财政年份:2015
- 资助金额:
$ 30.92万 - 项目类别:
Complete atomic dissection of the B. subtilis nitrogen regulatory pathway
枯草芽孢杆菌氮调节途径的完整原子解剖
- 批准号:
9118245 - 财政年份:2015
- 资助金额:
$ 30.92万 - 项目类别:
Protein Design, Expression and Purification Core
蛋白质设计、表达和纯化核心
- 批准号:
8931201 - 财政年份:2015
- 资助金额:
$ 30.92万 - 项目类别:
Assembly and partition mechanism of Walker-box based segregation machinery
基于Walker-box的分离机械的组装和分离机构
- 批准号:
9118256 - 财政年份:2015
- 资助金额:
$ 30.92万 - 项目类别:
Structural mechanism of DNA segregation by the pSK41 par system
pSK41 par系统DNA分离的结构机制
- 批准号:
8236042 - 财政年份:2009
- 资助金额:
$ 30.92万 - 项目类别:
Structural mechanism of DNA segregation by the pSK41 par system
pSK41 par系统DNA分离的结构机制
- 批准号:
7728001 - 财政年份:2009
- 资助金额:
$ 30.92万 - 项目类别:
相似国自然基金
基于呫吨酮的拟肽抗菌剂设计合成、抗菌活性和分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
脑靶向新型反义抗菌剂递送系统的构建、评价及其递送机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
土壤真菌群落对典型三唑类抗菌剂的抗药性响应特征和机制
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
二(苯乙烯基)酮类光敏抗菌剂的设计,合成及应用研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于声动力的高效靶向抗菌剂开发及其用于幽门螺杆菌感染治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterization of the nutrient assimilation pathways in M. tuberculosis
结核分枝杆菌营养同化途径的特征
- 批准号:
10304930 - 财政年份:2020
- 资助金额:
$ 30.92万 - 项目类别:
Mechanistic characterization and regulation of the non-redundant phu and has heme uptake systems of Pseudomonas aeruginosa
铜绿假单胞菌非冗余phu和血红素摄取系统的机制表征和调控
- 批准号:
10383767 - 财政年份:2018
- 资助金额:
$ 30.92万 - 项目类别:
Mechanistic characterization and regulation of the non-redundant phu and has heme uptake systems of Pseudomonas aeruginosa
铜绿假单胞菌非冗余phu和血红素摄取系统的机制表征和调控
- 批准号:
9916715 - 财政年份:2018
- 资助金额:
$ 30.92万 - 项目类别:
Mechanistic characterization and regulation of the non-redundant phu and has heme uptake systems of Pseudomonas aeruginosa
铜绿假单胞菌非冗余phu和血红素摄取系统的机制表征和调控
- 批准号:
9592815 - 财政年份:2018
- 资助金额:
$ 30.92万 - 项目类别:
The non-redundant role of the Has and Phu heme acquisition systems of Pseudomonas aeruginosa in iron homeostasis
铜绿假单胞菌 Has 和 Phu 血红素获取系统在铁稳态中的非冗余作用
- 批准号:
9469309 - 财政年份:2017
- 资助金额:
$ 30.92万 - 项目类别: