Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
基本信息
- 批准号:9427516
- 负责人:
- 金额:$ 45.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAddressAffectAlpha CellBehaviorBindingBiologicalBiological ProcessBiomechanicsBiomimeticsBiopolymersBlood capillariesCell CommunicationCell ShapeCell membraneCell modelCellsCerealsChemicalsCollagenCommunicationComplexComputer SimulationCoupledCytokinesisCytoskeletonDevelopmentDimensionsDiseaseDistantEquilibriumExperimental ModelsExtracellular MatrixF-ActinFeedbackGenerationsHumanIn VitroKnowledgeLeadLengthLightMechanicsMembraneMicrofilamentsMissionModelingMolecular MotorsMorphogenesisMorphologyMotorMuscleMuscle CellsMyosin ATPaseNeoplasm MetastasisOsmotic PressureOutcomePathogenesisPhysicsPhysiologicalPlayProcessPropertyProteinsRelaxationResearchResearch PersonnelRheologyRoleShapesStressStructureStructure of thyroid parafollicular cellStudy modelsSystemTalentsTissuesTranslatingUnited States National Institutes of HealthVascular DiseasesWalkingWound Healingbasebiological systemsbiophysical propertiescapillarycell motilitycell transformationdisabilityexperienceexperimental studyextracellularfield studyin vitro Assayin vivoinsightmechanical forcemulti-scale modelingnovelnovel therapeutic interventionsimulationspatiotemporaltheoriestransmission processviscoelasticity
项目摘要
PROJECT SUMMARY
The ability of cells to generate mechanical forces is attributed primarily to molecular interactions between F-actin
and myosin molecular motors in the cell cytoskeleton. Force generated at the cytoskeleton level is translated to
cellular and tissue scales, facilitating interesting biomechanical phenomena at multiple scales. For example, it
endows the actin cytoskeleton with complex, non-equilibrium viscoelastic properties which cannot be described
by theories from statistical physics based on thermal equilibrium. It also drives drastic morphological
transformations of cells accompanied by large-scale flow of the cell cytoskeleton in cell migration, division, and
morphogenesis. In addition, cells use the force produced from the cytoskeleton for structurally remodeling
surrounding extracellular matrices as well as for mechanically communicating with other cells in wound healing
and capillary morphogenesis. In all these biomechanical phenomena, a delicate balance between force
generation, transmission, and relaxation plays a very important role, and the disruption of the balance has
dramatic impacts on the pathogenesis of disease, such as cancer metastasis. Despite the significance of
mechanical forces, understanding of principles that regulate the delicate balance in biological structures still
lacks. By developing multi-scale computational models and employing quantitative in vitro experiments, we will
shed light on universal roles and underlying principles of force generation, transmission, and relaxation in
biological processes at cytoskeleton, cell, and tissue scales. We aim to address two fundamental questions: i)
how forces are generated and lead to non-equilibrium viscoelastic behaviors in disorganized actin cytoskeleton
and ii) how the forces are translated to cellular and tissue scales and regulate cell shape changes, matrix
remodeling, and mechanical communication between distant cells by interacting and competing with other
intracellular and extracellular factors. Outcomes from the proposed research will provide critical insights into
fundamental understanding of physiological and pathophysiological processes regulated by mechanical forces.
1
项目摘要
细胞产生机械力的能力主要归因于F-肌动蛋白之间的分子相互作用
细胞细胞骨架中的肌球蛋白分子电机。在细胞骨架水平上产生的力转化为
细胞和组织量表,促进多个尺度上有趣的生物力学现象。例如,它
将肌动蛋白细胞骨架具有复杂的,非平衡的粘弹性特性,无法描述
通过基于热平衡的统计物理学的理论。它也驱动了刺耳的形态学
细胞的转化以及细胞迁移,分裂和
形态发生。此外,细胞使用由细胞骨架产生的力进行结构重塑
围绕细胞外矩阵以及在伤口愈合中与其他细胞机械通信
和毛细血管形态发生。在所有这些生物力学现象中,力量之间的微妙平衡
产生,传播和放松起着非常重要的作用,平衡的破坏具有
对疾病的发病机理的巨大影响,例如癌症转移。尽管有重要意义
机械力,理解调节生物结构中微妙平衡的原理
缺乏。通过开发多尺度计算模型并采用定量体外实验,我们将
阐明了普遍角色和力量产生,传播和放松的基本原则
细胞骨架,细胞和组织尺度的生物过程。我们的目标是解决两个基本问题:i)
如何产生力并导致混乱的肌动蛋白细胞骨架中的非平衡粘弹性行为
ii)如何将力转化为细胞和组织尺度并调节细胞形状变化,矩阵
通过与其他相互作用和竞争,重塑和远处细胞之间的机械通信
细胞内和细胞外因子。拟议研究的结果将为您提供关键见解
对由机械力调节的生理和病理生理过程的基本理解。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taeyoon Kim其他文献
Taeyoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taeyoon Kim', 18)}}的其他基金
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
10388935 - 财政年份:2017
- 资助金额:
$ 45.67万 - 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
10001072 - 财政年份:2017
- 资助金额:
$ 45.67万 - 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
10245019 - 财政年份:2017
- 资助金额:
$ 45.67万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
丙酮酸激酶催化肌动球蛋白磷酸化调控肉嫩度的分子机制
- 批准号:32372263
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:32172242
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 45.67万 - 项目类别:
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 45.67万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 45.67万 - 项目类别:
Role of the S100 Family of Proteins in Lens Physiology and Cataract
S100 蛋白家族在晶状体生理学和白内障中的作用
- 批准号:
10560827 - 财政年份:2023
- 资助金额:
$ 45.67万 - 项目类别:
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 45.67万 - 项目类别: