Biophysical Studies of Non-Invasive Brain Cell Stimulation with Focused Ultrasound
聚焦超声非侵入性脑细胞刺激的生物物理研究
基本信息
- 批准号:9448055
- 负责人:
- 金额:$ 17.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2019-09-29
- 项目状态:已结题
- 来源:
- 关键词:Acoustic StimulationAcousticsAcuteAddressAdverse effectsAreaAstrocytesBiologicalBiophysical ProcessBiophysicsBrainBrain regionCalciumCalcium ChannelCalcium SignalingCell membraneCell physiologyCellsClinicCyclic AMP-Dependent Protein KinasesCytoskeletal ProteinsDataDementiaDiseaseEnergy TransferEngineeringExtracellular MatrixFemaleFluorescenceFocused UltrasoundGenetic EngineeringGoalsGreen Fluorescent ProteinsHumanImageInterventionIon ChannelLeadLegal patentLipid BilayersLongevityMeasurementMeasuresMechanical StimulationMechanical StressMechanicsMediatingMembraneMembrane ProteinsMemoryMetabolicModalityModelingMolecularMolecular ConformationMusNanotechnologyNerve RegenerationNeurogliaNeurologicNeurologyNeuronsOperative Surgical ProceduresOptical reporterOpticsOsmotic ShocksPatientsPharmacologyPhysiologic pulsePositioning AttributeProteinsReporterReportingResolutionRodentSamplingSignal TransductionSliceStimulusStretchingSystemTechniquesTechnologyTechnology TransferTestingTherapeuticTimeTissuesTraumatic Brain InjuryUltrasonographyVariantWorkbasebiophysical analysisbrain cellbrain sizebrain tissueclinical translationdesignengineering designexperimental studyinhibitor/antagonistinnovationmagnetic fieldmalemechanical forceneural circuitneuroregulationneurovascularneurovascular couplingnew technologyoptical sensorrelating to nervous systemresponsesensorvoltage
项目摘要
Abstract
Low-intensity pulsed ultrasound stimulation (LIPUS) is a promising technology for non-invasive
deep brain neuromodulation. Unfortunately, this technology is presently not available in the clinic
due to the lack of understanding of the molecular and cellular processes that take place in brain
cells upon ultrasound stimulation. The goal of this project is to uncover these mechanism(s). Our
preliminary data show that LIPUS elicit robust and consistent calcium signals in astrocytes,
suggesting a totally unanticipated mechanism wherein the neuromodulatory effects of LIPUS are
mediated by astrocytes, via direct or indirect activation of calcium channels. To investigate these
hypotheses, we propose to dissect LIPUS-induced calcium signaling in astrocytes and neurons
using pharmacological agents. If successful, this work will help make this new technology
available to patients who currently do not have access to effective and safe therapeutic options.
Non-invasive astrocyte stimulation with ultrasound may also lead to new treatments for traumatic
brain injury, neurovascular diseases or dementia. In parallel to this effort, we will develop
genetically-encoded fluorescent reporters of mechanical deformations of plasma membranes
induced upon LIPUS. Our preliminary molecular engineering design is very promising and will
lead to a patent application upon further characterization and optimization. These sensors will
enable rapid and easy localization and quantification of physical perturbations produced in cells
and tissues by exogenous and endogenous mechanical forces. We expect these reporters to
have a major impact in mechanobiology and nanotechnology.
抽象的
低强度脉冲超声刺激(Lipus)是一种无创的有前途的技术
深脑神经调节。不幸的是,目前在诊所无法使用这项技术
由于缺乏对大脑中发生的分子和细胞过程的了解
超声刺激时的细胞。该项目的目的是发现这些机制。我们的
初步数据表明,Lipus在星形胶质细胞中引起稳健和一致的钙信号,
提出一种完全意外的机制,其中脂肪的神经调节作用是
由星形胶质细胞介导,通过钙通道的直接或间接激活。调查这些
假设,我们建议在星形胶质细胞和神经元中剖析脂肪诱导的钙信号传导
使用药理剂。如果成功,这项工作将有助于使这项新技术
目前无法获得有效且安全的治疗选择的患者。
超声检查的非侵入性星形胶质细胞刺激也可能导致创伤的新治疗方法
脑损伤,神经血管疾病或痴呆症。与这项努力并行,我们将发展
质膜机械变形的遗传编码的荧光记者
诱导脂肪。我们的初步分子工程设计非常有前途,将会
在进一步的表征和优化后导致专利应用。这些传感器会
能够快速轻松地定位和量化细胞中产生的物理扰动
以及通过外源性和内源性机械力组织。我们希望这些记者能够
对机械生物学和纳米技术产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerome Jacques Lacroix其他文献
Jerome Jacques Lacroix的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
- 批准号:52350039
- 批准年份:2023
- 资助金额:80 万元
- 项目类别:专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
- 批准号:82302874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
海洋声学功能材料发展战略研究
- 批准号:52342304
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 17.58万 - 项目类别:
Binaural cue sensitivity in children and adults with combined electric and acoustic stimulation
电和声相结合刺激儿童和成人的双耳提示敏感性
- 批准号:
10585556 - 财政年份:2022
- 资助金额:
$ 17.58万 - 项目类别:
Therapeutic hypothermia to preserve residual hearing in veterans receiving cochlear implantation
低温治疗可保护接受人工耳蜗植入的退伍军人的残余听力
- 批准号:
10314602 - 财政年份:2022
- 资助金额:
$ 17.58万 - 项目类别:
Enhancement of tumor radiation response by ultrasound-driven nanobubble stimulation
超声驱动纳米气泡刺激增强肿瘤放射反应
- 批准号:
10468225 - 财政年份:2021
- 资助金额:
$ 17.58万 - 项目类别:
Application of mild therapeutic hypothermia for hearing conservation during cochlear implant surgeries
亚低温治疗在人工耳蜗植入手术中听力保护中的应用
- 批准号:
10327695 - 财政年份:2021
- 资助金额:
$ 17.58万 - 项目类别: