Overcoming barriers in the study of in vivo spinal cord function
克服体内脊髓功能研究的障碍
基本信息
- 批准号:8739332
- 负责人:
- 金额:$ 33.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-25 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:Amyotrophic Lateral SclerosisAnesthesia proceduresAnimal BehaviorAnimal CommunicationAnimalsAreaBehaviorBehavioral GeneticsBiologicalBody partBrainBrain regionCellsCollectionColorCommunicationData AnalysesDevelopmentDorsalElectrophysiology (science)FosteringFunctional ImagingFunctional disorderFutureGrantGuidelinesHeadHippocampus (Brain)ImageImage AnalysisInfectionLabelLaboratoriesLifeLightLinkMethodsMicroscopeMicroscopyMiniaturizationMusMuscular DystrophiesNervous System PhysiologyNeuraxisNeurodegenerative DisordersNeurogliaNeurologicNeuronsNeurosciences ResearchNoiseOpticsPathologyPatternPhotonsPhysiologyPropertyProtocols documentationResearchResolutionSamplingScienceSignal TransductionSourceSpinalSpinal CordSpinal cord injuryStaining methodStainsSynapsesTimeLineTissue StainsTissuesadaptive opticsawakebasebehavior testcell typecentral pattern generatorgenetic manipulationimprovedin vivoin vivo imaginginnovationinsightminiaturizeminimally invasivenoveloptical imagingpublic health relevancerehabilitation strategyrestraintspinal cord imagingsuccesstissue preparationtooltreatment strategytumortwo-photon
项目摘要
DESCRIPTION (provided by applicant): Deciphering the relationship between animal behavior and cellular activity in the central nervous system (CNS) is perhaps one of the greatest challenges in neuroscience research today. Traditionally, electrophysiological approaches have been used to sparsely sample from electrically excitable cells of freely moving animals. This has led to the discovery of important behaviorally related phenomena such as place, grid, and head-direction cells in the brain and central pattern generator (CPG) neurons in the spinal cord. Optical imaging in combination with new labeling approaches now allows minimally invasive and comprehensive sampling from dense networks of electrically and chemically excitable cells, such as neurons and glial cells. Imaging in head- restrained mobile mice and with miniaturized head-borne microscopes, for example, has led to the discovery of unanticipated forms of behaviorally related neuronal and glial cell excitation in cortical and hippocampal microcircuits. Long wavelength two- and three-photon excitation now enables imaging in brain regions previously accessible only by invasive endoscopic methods. In contrast, imaging in the spinal cord, the primary neurological link between the brain and other parts of the body, is limited to superficial dorsal regions in anesthetized animals. Because anesthesia precludes animal behavior and alters cellular activity, and because essential central pattern generator components are located in deep tissue regions key aspects of spinal cord physiology have remained elusive. Additionally, because current imaging approaches are limited to either the spinal cord or brain, little is known about how the communication between these CNS regions contributes to behavior. Overcoming such critical barriers in the study of CNS function and dysfunction requires development and application of new tools and approaches. As part of this application new tools and approaches for minimally invasive optical recordings from spinal cord microcircuits during animal behavior, from presently inaccessible deep spinal cord regions, and from anatomically connected brain-spinal cord networks will be developed. The rationale for the proposed research is that once these barriers have been overcome new and unanticipated insight into spinal cord physiology and pathology will be gained. Three specific aims will be pursued: 1) Enable study of spinal cord microcircuits in behaving mice through development of restraint and freely moving imaging approaches; 2) Enable minimally invasive study of deep spinal cord regions in live mice through development of adaptive infrared imaging approaches; and 3) Enable minimally invasive study of spinal cord-brain communication in live mice through development of parallel imaging approaches. Together, the proposed research contribution is significant because it will provide new and unanticipated insight into how defined cell types and their activity patterns relate to spinal cord physiology, brain-spinal cord communication, and animal behavior. It is innovative because it will provide a unique set of tools and approaches with groundbreaking possibilities in multiple areas of science.
描述(由申请人提供):破译动物行为与中枢神经系统(CNS)细胞活动之间的关系可能是当今神经科学研究中最大的挑战之一。传统上,电生理学方法已用于从自由活动的动物的电兴奋细胞中进行稀疏采样。这导致了重要的行为相关现象的发现,例如大脑中的位置细胞、网格细胞和头部方向细胞以及脊髓中的中央模式发生器(CPG)神经元。光学成像与新的标记方法相结合,现在可以从神经元和神经胶质细胞等可电和化学兴奋的细胞的密集网络中进行微创和全面的采样。例如,通过对头部受限的移动小鼠和小型头戴式显微镜进行成像,我们发现了皮层和海马微电路中与行为相关的神经元和神经胶质细胞兴奋的意外形式。长波长二光子和三光子激发现在可以对以前只能通过侵入性内窥镜方法才能到达的大脑区域进行成像。相比之下,脊髓(大脑和身体其他部位之间的主要神经联系)的成像仅限于麻醉动物的浅表背侧区域。由于麻醉会阻止动物行为并改变细胞活动,并且由于重要的中枢模式发生器组件位于深层组织区域,因此脊髓生理学的关键方面仍然难以捉摸。此外,由于当前的成像方法仅限于脊髓或大脑,因此人们对这些中枢神经系统区域之间的通信如何影响行为知之甚少。克服中枢神经系统功能和功能障碍研究中的这些关键障碍需要开发和应用新的工具和方法。作为该应用的一部分,将开发新的工具和方法,用于从动物行为期间的脊髓微电路、目前无法到达的深部脊髓区域以及解剖学上连接的脑-脊髓网络进行微创光学记录。拟议研究的基本原理是,一旦克服了这些障碍,就会获得对脊髓生理学和病理学的新的、意想不到的见解。我们将追求三个具体目标:1)通过开发约束和自由移动成像方法来研究行为小鼠的脊髓微电路; 2)通过开发自适应红外成像方法,实现对活体小鼠脊髓深部区域的微创研究; 3) 通过开发并行成像方法,对活体小鼠的脊髓-大脑通讯进行微创研究。总之,拟议的研究贡献意义重大,因为它将提供新的、意想不到的见解,了解定义的细胞类型及其活动模式如何与脊髓生理学、脑脊髓通讯和动物行为相关。它具有创新性,因为它将提供一套独特的工具和方法,在多个科学领域具有突破性的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Axel Nimmerjahn其他文献
Axel Nimmerjahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Axel Nimmerjahn', 18)}}的其他基金
Linking Fast Timescale Neuron-Astrocyte Communication to Neural Circuit Function and Behavior
将快速时间尺度神经元-星形胶质细胞通信与神经回路功能和行为联系起来
- 批准号:
10294804 - 财政年份:2021
- 资助金额:
$ 33.76万 - 项目类别:
Linking Fast Timescale Neuron-Astrocyte Communication to Neural Circuit Function and Behavior
将快速时间尺度神经元-星形胶质细胞通信与神经回路功能和行为联系起来
- 批准号:
10693171 - 财政年份:2021
- 资助金额:
$ 33.76万 - 项目类别:
Linking Fast Timescale Neuron-Astrocyte Communication to Neural Circuit Function and Behavior
将快速时间尺度神经元-星形胶质细胞通信与神经回路功能和行为联系起来
- 批准号:
10461226 - 财政年份:2021
- 资助金额:
$ 33.76万 - 项目类别:
Elucidating cellular activity patterns underlying spinal cord function
阐明脊髓功能背后的细胞活动模式
- 批准号:
9912873 - 财政年份:2019
- 资助金额:
$ 33.76万 - 项目类别:
Elucidating cellular activity patterns underlying spinal cord function
阐明脊髓功能背后的细胞活动模式
- 批准号:
10381704 - 财政年份:2019
- 资助金额:
$ 33.76万 - 项目类别:
Genetically encoded indicators for large-scale sensing of neuromodulatory signaling in behaving animals
用于大规模感知行为动物神经调节信号的基因编码指标
- 批准号:
9533713 - 财政年份:2017
- 资助金额:
$ 33.76万 - 项目类别:
Genetically encoded indicators for large-scale sensing of neuromodulatory signaling in behaving animals
用于大规模感知行为动物神经调节信号的基因编码指标
- 批准号:
9767296 - 财政年份:2017
- 资助金额:
$ 33.76万 - 项目类别:
相似海外基金
Toxic Effects of Anesthetics in Developing White Matter
麻醉药对白质发育的毒性作用
- 批准号:
10372991 - 财政年份:2020
- 资助金额:
$ 33.76万 - 项目类别:
Toxic Effects of Anesthetics in Developing White Matter
麻醉药对白质发育的毒性作用
- 批准号:
10592303 - 财政年份:2020
- 资助金额:
$ 33.76万 - 项目类别:
Overcoming barriers in the study of in vivo spinal cord function
克服体内脊髓功能研究的障碍
- 批准号:
9129753 - 财政年份:2013
- 资助金额:
$ 33.76万 - 项目类别:
Overcoming barriers in the study of in vivo spinal cord function
克服体内脊髓功能研究的障碍
- 批准号:
8640775 - 财政年份:2013
- 资助金额:
$ 33.76万 - 项目类别:
Physiology Core - Interdepartmental Two-photon Imaging Center
生理学核心-跨部门双光子成像中心
- 批准号:
7408920 - 财政年份:2006
- 资助金额:
$ 33.76万 - 项目类别: