Analysis of de novo mutation from sequencing of related individuals and cells
通过相关个体和细胞的测序分析从头突变
基本信息
- 批准号:9234033
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-08 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAgingAllelesAlpha CellAnimal ModelAreaAutistic DisorderBenchmarkingBiologicalCancer BiologyCancerousCellsChildChildhoodChromosome SegregationCommunitiesComplexComputer softwareDNA ResequencingDNA SequenceDataData SetDetectionDevelopmentDevelopmental Delay DisordersDiseaseDropoutDrosophila genusEnvironmental ExposureError SourcesExperimental ModelsFamilyGenealogyGenesGeneticGenetic ResearchGenomeGenomicsGenotypeGerm CellsGerm-Line MutationGoalsHeartHereditary DiseaseHigh-Throughput Nucleotide SequencingHumanHuman CharacteristicsHuman GeneticsIndividualInvestmentsJointsMalignant NeoplasmsMedical GeneticsMethodologyMethodsMicrobeModelingMosaicismMusMutationMutation DetectionNoiseParentsPhenotypePhylogenyPlayPopulationPopulation HeterogeneityProbabilityProcessPropertyResearchResearch PersonnelRisk FactorsRoleSamplingSchizophreniaScientistSiteSomatic MutationStatistical MethodsSurveysTechnologyTestingTimeTissue ModelTissue SampleTissuesToxicogeneticsTreesUnmarried personValidationVariantage effectbaseclinical practicecostgenetic pedigreegenome-widehuman diseasehuman tissueimprovedinsertion/deletion mutationinsightmarkov modelnovelopen sourcepersonalized genomic medicinepractical applicationprogramspublic health relevancerare variantsexsingle cell sequencingtooltumorwhole genome
项目摘要
DESCRIPTION (provided by applicant): De novo DNA sequence mutations are mutations not inherited from a parent and play an important role in many human disorders, including cancer, autism, schizophrenia, and heart conditions. However, de novo mutations can be difficult to identify because sequencing errors are more common than mutations. Current approaches used to analyze DNA sequence data are inadequate to identify de novo mutations successfully at a genome scale because each potential de novo mutation must be validated by a costly and time-consuming validation process. Our goal is to improve the identification of de novo mutations in order to understand their role in genetic disorders. We will develop a novel statistical approach to identify de novo mutations, and we will implement it in software to make our method readily available to other researchers. Our first objective is to determine the probability that an apparent DNA sequence change is due to a de novo mutation, when analyzing short-read sequencing data from families. To determine this probability, we will integrate over other possible sources of error/noise including sequencing error, population diversity, and chromosome segregation. Secondly, we will expand on this model to detect somatic de novo mutations between multiple tissues from the same individual (e.g. matched tumor-normal datasets). Thirdly, we will develop new models to handle sequencing data from single-cell sequencing, which generates different probabilities of error compared to those discussed previously. These three aims are unified by a common approach of using genealogical information relating people, tissues, or individual cells, to improve the accuracy of de novo mutation discovery. Finally, we will implement these methods in an easy-to-use software package that will make the identification of de novo mutations possible for scientists working on subjects ranging from variation in mutation rates to the effects of aging. The methods developed here can benefit the hundreds, if not thousands, of studies that will search for and characterize de novo mutations in the coming decade. This package will be open source and free for the community to use.
描述(由申请人提供):从头DNA序列突变是未从父母那里遗传而来的突变,而是在许多人类疾病中起重要作用,包括癌症,自闭症,精神分裂症和心脏病。但是,从头突变可能很难识别,因为测序误差比突变更常见。用于分析DNA序列数据的当前方法不足以在基因组量表上成功识别从头突变,因为每个潜在的从头突变都必须通过昂贵且耗时的验证过程来验证。我们的目标是改善从头突变的识别,以了解其在遗传疾病中的作用。我们将开发一种新型的统计方法来识别从头突变,并将其在软件中实施,以使我们的方法随时可用于其他研究人员。我们的第一个目的是确定在分析家族的短阅读测序数据时,明显的DNA序列变化是由于从头突变引起的。为了确定这种概率,我们将在其他可能的误差/噪声来源上整合,包括测序误差,人群多样性和染色体分离。其次,我们将在该模型上扩展,以检测来自同一个体的多个组织之间的从头突变(例如匹配的肿瘤正常数据集)。第三,我们将开发新的模型来处理单细胞测序的测序数据,该测序与前面讨论的误差相比会产生不同的错误概率。这三个目标是通过使用与人,组织或单个细胞相关的谱系信息来提高从头突变发现的准确性的一种常见方法来统一的。最后,我们将在易于使用的软件包中实施这些方法,该软件包将使从事从突变率变化到衰老的影响的科学家对从头突变的识别。这里开发的方法可以使数百种(即使不是数千个)的研究受益,这些研究将在未来十年中搜索和表征从头突变。此软件包将是开源的,可以免费使用社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DONALD F. CONRAD其他文献
DONALD F. CONRAD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DONALD F. CONRAD', 18)}}的其他基金
Coordinating center for collaborative marmoset research
狨猴协作研究协调中心
- 批准号:
10044896 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Coordinating center for collaborative marmoset research
狨猴协作研究协调中心
- 批准号:
10416064 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Coordinating center for collaborative marmoset research
狨猴协作研究协调中心
- 批准号:
10651680 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Coordinating center for collaborative marmoset research
狨猴协作研究协调中心
- 批准号:
10248400 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Discovery and Annotation of Targets for Gene Therapy of Infertile Men
不育男性基因治疗靶点的发现和注释
- 批准号:
10613341 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Discovery and Annotation of Targets for Gene Therapy of Infertile Men
不育男性基因治疗靶点的发现和注释
- 批准号:
10379348 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Analysis of de novo mutation from sequencing of related individuals and cells
通过相关个体和细胞的测序分析从头突变
- 批准号:
9480987 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Analysis of de novo mutation from sequencing of related individuals and cells
通过相关个体和细胞的测序分析从头突变
- 批准号:
8639292 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Analysis of de novo mutation from sequencing of related individuals and cells
通过相关个体和细胞的测序分析从头突变
- 批准号:
9024596 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
MODELING THE EFFECTS OF STRUCTURAL VARIATION IN GTEX DATA AND MENDELIAN DISEASE
模拟 GTEX 数据结构变异和孟德尔疾病的影响
- 批准号:
8706981 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
相似国自然基金
TBX20在致盲性老化相关疾病年龄相关性黄斑变性中的作用和机制研究
- 批准号:82220108016
- 批准年份:2022
- 资助金额:252 万元
- 项目类别:国际(地区)合作与交流项目
LncRNA ALB调控LC3B活化及自噬在体外再生晶状体老化及年龄相关性白内障发病中的作用及机制研究
- 批准号:81800806
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
APE1调控晶状体上皮细胞老化在年龄相关性白内障发病中的作用及机制研究
- 批准号:81700824
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
KDM4A调控平滑肌细胞自噬在年龄相关性血管老化中的作用及机制
- 批准号:81670269
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
老年人一体化编码的认知神经机制探索与干预研究:一种减少与老化相关的联结记忆缺陷的新途径
- 批准号:31470998
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别: