Predicting Internet-Based Treatment Response for Major Depressive Disorder
预测重度抑郁症基于互联网的治疗反应
基本信息
- 批准号:9328159
- 负责人:
- 金额:$ 13.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-08 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAftercareAlgorithmsBostonCharacteristicsClinicalCognitive TherapyComorbidityComplexDataData CollectionDepressed moodDepression screenDevelopmentDifferentiation AntigensDropoutEffectivenessEnrollmentFailureFoundationsFrequenciesFunctional Magnetic Resonance ImagingGoalsHealthcareHeterogeneityIncomeIndividualInternetInterventionMachine LearningMajor Depressive DisorderMeasuresMental DepressionMental HealthMental Health ServicesMethodsModelingNegative ValenceNeurocognitiveOnline SystemsParticipantPatient Self-ReportPatientsPharmacologyPhasePolicy MakerPositioning AttributePositive ValencePredictive AnalyticsProbabilityRandomizedReactionRecruitment ActivityRecurrenceReportingResearchResearch Domain CriteriaResearch PersonnelResourcesRisk BehaviorsSample SizeSamplingSchoolsServicesStudentsSuicideSupervisionSurveysSymptomsSystemTechnologyTestingTrainingTreatment outcomeUniversitiesValidationbasebrain circuitrycognitive systemcohortcollegecontrol trialcostcost effectivedata integrationdepressive symptomsdesigneffective interventionethnic diversityexperienceimprovedindexinginnovationlearning strategymemberminor depressive disorderminority studentneurocognitive testneuromechanismpredicting responseprediction algorithmpredictive modelingpredictive of treatment responseprogramsreduce symptomsrelating to nervous systemresponders and non-respondersresponsereward expectancyscreeningsuicidal behaviorsupport toolstreatment as usualtreatment effecttreatment responderstreatment responseuniversity student
项目摘要
As many as 53% of students report experiencing depression during college, and these depressive
episodes are associated with a higher frequency of academic problems, comorbidity, and suicide. Although
there are effective options for treatment, the majority of individuals (>70%) do not pursue services, and even
for those who do, response rates remain modest (~40-50%). As a means of increasing accessibility to
treatment, internet-based interventions for depression have been developed and tested. Despite increased
availability, response to internet-based interventions continues to vary substantially, and failed treatment often
contributes to persistence and worsening of symptoms. Therefore, identifying individuals with a high likelihood
of responding to internet-based treatment would represent a major advance and address a critical unmet need.
In recent years, promising approaches for testing the heterogeneity of the treatment effects – delineating
which individuals are likely to respond to a given treatment – have been developed. However, their use for
identifying predictors of treatment response in depression remains unclear. To address this unmet need, the
proposed study will test a new, cost-effective, and feasibly-scaled method of predicting differential treatment
response following internet-based cognitive behavioral therapy (iCBT) for depression in a large, representative
college sample (Boston Consortium of Colleges and Universities which includes 7 schools). Members of the
consortium have committed to screening all incoming freshmen (N = ~14,000) through a rigorous online
assessment and to offer iCBT to students with elevated levels of depressive symptoms (i.e., minor or major
depression). The following steps will be pursued. First, in the initial phase of the study, freshmen students from
the Boston Consortium will be screened for depression through an online survey, and they also will complete
web-based neurocognitive tasks probing key mechanisms underpinning depression. Depressed students will
be invited to enroll in iCBT, and a predictive algorithm will be developed based on assessments across
different units of analysis (i.e., clinical characteristics, neurocognitive indices) to identify iCBT responders.
Second, after the development phase, an independent sample of college students will be recruited to validate
the predictive algorithm. This validation phase will use clinical indicators and neurocognitive data. Additionally,
functional magnetic resonance imaging (fMRI) data targeting key mechanisms within the Research Domain
Criteria (RDoC) will be acquired from a subset of participants. Neural data will be integrated to determine
whether they improve the predictive algorithm. Third, data across independent samples will be combined,
which will increase power to refine our predictive model for both acute and sustained response. In summary,
there are alarming rates of depression among college students, and only a minority of students utilize mental
health services. The proposed research will personalize our approach to depression treatment, which,
ultimately, will improve effectiveness and better inform mental health care across college campuses.
多达 53% 的学生表示在大学期间经历过抑郁症,而这些抑郁症患者
发作与较高频率的学业问题、合并症和自杀有关。
有有效的治疗选择,大多数人(>70%)不寻求服务,甚至
对于那些这样做的人,回复率仍然较低(~40-50%)。
尽管治疗方法有所增加,但基于互联网的抑郁症干预措施已经被开发出来并进行了测试。
可用性、对基于互联网的干预措施的反应仍然存在很大差异,并且治疗经常失败
导致症状持续存在和恶化,因此,识别具有高可能性的个体。
对基于互联网的治疗做出反应将是一项重大进步,并解决未满足的关键需求。
近年来,测试治疗效果异质性的有前景的方法——描绘
哪些人可能会对特定的治疗产生反应——但它们的用途已经被开发出来。
确定抑郁症治疗反应的预测因素仍不清楚。
拟议的研究将测试一种新的、具有成本效益且规模可行的预测差异化治疗的方法
基于互联网的认知行为疗法(iCBT)治疗抑郁症后的反应
大学样本(波士顿学院和大学联盟,其中包括 7 所学校的成员)。
联盟承诺通过严格的在线筛选所有新生(N = ~14,000)
评估并向患有抑郁症状(即轻微或严重抑郁症状)的学生提供 iCBT
首先,在研究的初始阶段,将采取以下步骤。
波士顿联盟将通过在线调查筛查抑郁症,他们还将完成
基于网络的神经认知任务探究抑郁症学生的关键机制。
受邀参加 iCBT,并将根据跨领域的评估开发预测算法
不同的分析单位(即临床特征、神经认知指数)来识别 iCBT 反应者。
其次,开发阶段结束后,将招募独立的大学生样本进行验证
预测算法。此验证阶段将使用临床指标和神经认知数据。
针对研究领域内关键机制的功能磁共振成像 (fMRI) 数据
标准 (RDoC) 将从参与者子集获取,神经数据将被整合以确定。
他们是否改进了预测算法第三,独立样本的数据将被合并,
这将增强我们针对急性和持续反应的预测模型的完善能力。
大学生抑郁症发病率惊人,只有少数学生利用心理
拟议的研究将使我们的抑郁症治疗方法个性化,其中,
最终,将提高效率并更好地为整个大学校园的心理健康保健提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RANDY PATRICK AUERBACH其他文献
RANDY PATRICK AUERBACH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RANDY PATRICK AUERBACH', 18)}}的其他基金
Targeting adolescent depression symptoms using network-based real-time fMRI neurofeedback and mindfulness meditation
使用基于网络的实时功能磁共振成像神经反馈和正念冥想针对青少年抑郁症状
- 批准号:
10581837 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别:
Interpersonal Stress, Social Media, and Risk for Adolescent Suicidal Thoughts and Behaviors
人际压力、社交媒体以及青少年自杀想法和行为的风险
- 批准号:
10815112 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别:
Social Processing Deficits in Remitted Adolescent Depression
青少年抑郁症缓解后的社会处理缺陷
- 批准号:
10513829 - 财政年份:2019
- 资助金额:
$ 13.94万 - 项目类别:
Social Processing Deficits in Remitted Adolescent Depression
青少年抑郁症缓解后的社会处理缺陷
- 批准号:
10292961 - 财政年份:2019
- 资助金额:
$ 13.94万 - 项目类别:
Social Processing Deficits in Remitted Adolescent Depression
青少年抑郁症缓解后的社会处理缺陷
- 批准号:
10064641 - 财政年份:2019
- 资助金额:
$ 13.94万 - 项目类别:
Social Processing Deficits in Remitted Adolescent Depression
青少年抑郁症缓解后的社会处理缺陷
- 批准号:
9908456 - 财政年份:2019
- 资助金额:
$ 13.94万 - 项目类别:
Predicting Internet-Based Treatment Response for Major Depressive Disorder
预测重度抑郁症基于互联网的治疗反应
- 批准号:
9624631 - 财政年份:2016
- 资助金额:
$ 13.94万 - 项目类别:
Predicting Internet-Based Treatment Response for Major Depressive Disorder
预测重度抑郁症基于互联网的治疗反应
- 批准号:
9314157 - 财政年份:2016
- 资助金额:
$ 13.94万 - 项目类别:
Examination of Reward Processing in the Treatment of Adolescent Major Depression
奖励处理在青少年重度抑郁症治疗中的检验
- 批准号:
8641726 - 财政年份:2013
- 资助金额:
$ 13.94万 - 项目类别:
Examination of Reward Processing in the Treatment of Adolescent Major Depression
奖励处理在青少年重度抑郁症治疗中的检验
- 批准号:
8509096 - 财政年份:2013
- 资助金额:
$ 13.94万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Targeting urinary tract dysfunctions after spinal cord injury with epidural stimulation
通过硬膜外刺激治疗脊髓损伤后的尿路功能障碍
- 批准号:
10656916 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别:
Enhancing Hypnotic Medication Discontinuation in Primary Care through Supervised Medication Tapering and Digital Cognitive Behavioral Insomnia Therapy
通过监督药物逐渐减量和数字认知行为失眠治疗,加强初级保健中催眠药物的停药
- 批准号:
10736443 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别:
Resources, Workforce Development, and Animal Models for the Rutgers RBL
罗格斯大学 RBL 的资源、劳动力发展和动物模型
- 批准号:
10793863 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别: