Leveraging Novel Multivariate Methods of Subphenotypes in Genetic Association Studies of Sjogren’s Syndrome
利用新的亚表型多变量方法进行干燥综合征的遗传关联研究
基本信息
- 批准号:9344575
- 负责人:
- 金额:$ 24.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-02 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressArchitectureAutoantibodiesAutoimmune DiseasesBig DataBiological MarkersCharacteristicsClinicalClinical DataCohort StudiesCollectionCommunitiesComplexComputer softwareCoupledDataData AnalysesData SetDevelopmentDiseaseEnvironmental Risk FactorEtiologyExhibitsFutureGeneticGenetic MarkersGenetic ModelsGenetic RiskGenetic studyGenotypeHeterogeneityHumanHuman GeneticsIndividualInternationalMeasuresMedical GeneticsMethodologyMethodsModelingMultivariate AnalysisNational Institute of Dental and Craniofacial ResearchNoiseOralOutcomePhenotypePrincipal Component AnalysisProductionPropertyPublic HealthPublicationsResearch PersonnelResearch Project GrantsResearch ProposalsResolutionResourcesSample SizeSignal TransductionSjogren&aposs SyndromeSoftware ToolsStandardizationStructureTechniquesTestingVariantWorkanalytical methodbasecase controlcohortcostdesigndisease heterogeneityendophenotypeflexibilitygenetic associationgenetic epidemiologygenetic variantgenome wide association studygenome-widehigh dimensionalityhuman diseaseimprovedinfancyinnovationinsightnovelpleiotropismsuccesssystemic autoimmune diseasetooltrait
项目摘要
Abstract
Genetic epidemiology has entered the big data era with many cohort studies having access to not only
genome-wide genotyping data but also large number of disease-related traits and a variety of biomarkers.
These extensive datasets hold great promise for increasing our understanding of human diseases and
improving public health. However, statistical tools to leverage these data are severely lacking and the
development of innovative methodological approaches remains a key component for future successes. Indeed,
most genetic association studies still utilize standard univariate approach, testing each measured phenotype
independently for association with each single genetic variant. Our recent work has shown that phenotypes
sharing genetic and environmental underpinnings can be leveraged in multi-phenotype analyses to increase
statistical power to detect associated genetic loci. Diseases showing heterogeneity and/or evidence for
subtypes that can be partially characterized by endophenotypes and biomarkers, including several
autoimmune diseases such as the Sjögren's syndrome (SS), are particularly good candidates for multi-
phenotype methods.
In this proposal we aim to apply two new multi-phenotype methods for the analysis of over 50 SS related
phenotypes from the Sjögren's International Collaborative Clinical Alliance (SICCA) study. SICCA has
generated a unique collection of SS case/control and SS related phenotypes along genome-wide genotypes
data among more than 3,500 individuals. The first proposed approach is an extension of the multivariate
method based on a principal component analysis framework that we recently developed. Unlike standard
univariate approaches, our method is capable of detecting associations even when there exist multiple
genetically heterogeneous subphenotypes of the disease. It is based on composite null hypothesis (all
phenotypes are tested jointly), so that single phenotype-genotype association cannot be established. This
limitation is the cost for dramatic increase in statistical power to identify genetic variant with positive and
negative pleiotropic effect (concordant and discordant genetic effect respectively). The second approach relies
on a new and innovative strategy that will be developed as part of this proposal. As oppose to multivariate
methods, this approach keeps the univariate properties of determining association between a single outcome
and a single genetic variant, but as in multivariate approaches, it leverages correlation with other available
phenotypes.
Using the proposed approaches we expect to dramatically increase our ability to identify genetic variants
associated with SS phenotypes. We fully expect that these two methods will reveal important insights into the
genetic basis of SS and will go on to serve the broader the genetics community.
抽象的
遗传流行病学已经进入大数据时代,许多队列研究不仅可以获得
全基因组基因分型数据,还有大量疾病相关性状和各种生物标志物。
这些广泛的数据集为增进我们对人类疾病和疾病的了解带来了巨大的希望。
然而,严重缺乏利用这些数据的统计工具。
事实上,创新方法的发展仍然是未来成功的关键组成部分。
大多数遗传关联研究仍然采用标准的单变量方法,测试每个测量的表型
我们最近的工作表明,表型与每个单一遗传变异的关联是独立的。
可以在多表型分析中利用共享遗传和环境基础来增加
检测相关遗传位点的疾病的统计能力和/或证据。
可以通过内表型和生物标志物部分表征的亚型,包括几种
自身免疫性疾病,例如干燥综合征(SS),是多方面治疗的特别好的候选者。
表型方法。
在本提案中,我们的目标是应用两种新的多表型方法来分析 50 多个 SS 相关的
来自 Sjögren 国际合作临床联盟 (SICCA) 研究的表型。
沿着全基因组基因型生成了 SS 病例/对照和 SS 相关表型的独特集合
第一个提出的方法是多变量的扩展。
与标准不同,该方法基于我们最近开发的主成分分析框架。
单变量方法,我们的方法能够检测关联,即使存在多个
该疾病的遗传异质亚表型基于复合零假设(全部)。
表型联合测试),因此无法建立单一表型-基因型关联。
限制是显着提高统计能力来识别具有阳性和阴性遗传变异的成本。
第二种方法依赖于负多效性效应(分别是一致和不一致的遗传效应)。
作为该提案的一部分,将制定一项新的创新战略,而不是多元。
方法,这种方法保留了确定单个结果之间关联的单变量属性
和单一遗传变异,但与多变量方法一样,它利用与其他可用的相关性
表型。
使用所提出的方法,我们预计将显着提高我们识别遗传变异的能力
我们完全期望这两种方法将揭示有关 SS 表型的重要见解。
SS 的遗传学基础,并将继续为更广泛的遗传学界服务。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multitrait GWAS to connect disease variants and biological mechanisms.
- DOI:10.1371/journal.pgen.1009713
- 发表时间:2021-08
- 期刊:
- 影响因子:4.5
- 作者:Julienne H;Laville V;McCaw ZR;He Z;Guillemot V;Lasry C;Ziyatdinov A;Nerin C;Vaysse A;Lechat P;Ménager H;Le Goff W;Dube MP;Kraft P;Ionita-Laza I;Vilhjálmsson BJ;Aschard H
- 通讯作者:Aschard H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hugues Aschard其他文献
Hugues Aschard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hugues Aschard', 18)}}的其他基金
Leveraging Novel Multivariate Methods of Subphenotypes in Genetic Association Studies of Sjogren’s Syndrome
利用新的亚表型多变量方法进行干燥综合征的遗传关联研究
- 批准号:
9181136 - 财政年份:2016
- 资助金额:
$ 24.03万 - 项目类别:
Identifying Genome-scale Interaction Effects in Human Traits and Diseases
识别人类特征和疾病的基因组规模相互作用效应
- 批准号:
9146373 - 财政年份:2015
- 资助金额:
$ 24.03万 - 项目类别:
Relaxing genetic models to identify genetic variants involved in gene-gene and ge
放宽遗传模型来识别基因-基因和基因相关的遗传变异
- 批准号:
8599786 - 财政年份:2012
- 资助金额:
$ 24.03万 - 项目类别:
Relaxing genetic models to identify genetic variants involved in gene-gene and ge
放宽遗传模型来识别基因-基因和基因相关的遗传变异
- 批准号:
8444137 - 财政年份:2012
- 资助金额:
$ 24.03万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
"Novel Mouse Models for Quantitative Understanding of Baseline and Therapy-Driven Evolution of Prostate Cancer Metastasis"
“用于定量了解前列腺癌转移的基线和治疗驱动演变的新型小鼠模型”
- 批准号:
10660349 - 财政年份:2023
- 资助金额:
$ 24.03万 - 项目类别:
Image-based risk assessment to identify women at high-risk for breast cancer
基于图像的风险评估可识别乳腺癌高危女性
- 批准号:
10759110 - 财政年份:2023
- 资助金额:
$ 24.03万 - 项目类别:
Elucidating the ancestry-specific genetic and environmental architecture of cardiometabolic traits across All of Us ethnic groups
阐明我们所有种族群体心脏代谢特征的祖先特异性遗传和环境结构
- 批准号:
10796028 - 财政年份:2023
- 资助金额:
$ 24.03万 - 项目类别:
Early Onset Parkinson’s disease subtypes and pathogenic mechanisms
早发性帕金森病亚型及致病机制
- 批准号:
10719645 - 财政年份:2023
- 资助金额:
$ 24.03万 - 项目类别: