Probing the role of cysteine sulfenylation in cell signaling
探讨半胱氨酸磺酰化在细胞信号传导中的作用
基本信息
- 批准号:9380891
- 负责人:
- 金额:$ 41.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesBackBiochemicalBiochemistryBiologicalBiological AssayBiological MarkersBiological ProcessBiologyBrainCellsChemicalsChemistryClustered Regularly Interspaced Short Palindromic RepeatsCodeCollaborationsComplementCultured CellsCysteineData SetDependencyDetectionDevelopmentDiseaseDrug TargetingElementsEnsureEnzymesEpidermal Growth Factor ReceptorEvaluationEventFamilyFundingGenesGenetic TranscriptionHeartHydrogen PeroxideIndividualIsotopesKnock-outKnockout MiceLearningLiverLungMalignant NeoplasmsMammalian CellMapsMediatingMedicineMetabolic DiseasesMethodsModificationMolecularMonitorMusNADPH OxidaseNeurodegenerative DisordersOrganOxidantsOxidation-ReductionOxidoreductasePathway AnalysisPathway interactionsPeptidesPhosphorylationPhosphotransferasesPhysiologicalPost-Translational Protein ProcessingPreparationProcessPropertyProtein IsoformsProtein SProtein Tyrosine KinaseProteinsProteomeProteomicsReactionRegulationReportingRepressionResearchResourcesRoleSignal PathwaySignal TransductionSiteSite-Directed MutagenesisSpecificitySulfenic AcidsSulfhydryl CompoundsSulfinic AcidsSystemTestingTherapeutic InterventionTimeTransgenic MiceVitronectinWorkadductanalytical toolbiophysical propertiesbody systemchemoproteomicscomputerized toolscysteine sulfinic acidcysteinesulfenic aciddesigndiazeneexpectationexperimental studyimprovedin vivoinsightnoveloxidationprotein structurereaction ratescaffoldstoichiometrytherapeutic targettool
项目摘要
ABSTRACT
Hydrogen peroxide (H2O2) is a versatile oxidant that mediates numerous biological functions within every major
organ system. An emerging molecular pathway by which H2O2 accomplishes functional diversity is through the
specific modification of protein cysteine residues to form S-sulfenylcysteine. This post-translational
modification, S-sulfenylation, regulates protein activity and localization. Despite considerable advances with
individual proteins, the biological chemistry, the dependency on specific H2O2-generating NADPH oxidases
(Nox), and the structural elements that govern the modification of specific cysteine residues in vivo are vastly
unknown. To provide insights into these fundamental biological questions, sensitive, validated, and quantitative
chemical proteomic approaches are needed, but remain at an early stage of development. To this end, during
the last funding period we developed and implemented a novel chemical proteomic approach. This new
method has achieved specific, efficient, complementary and selective identification of S-sulfenylated cysteine
residues in living cells. Currently, implementation of our chemoproteomic method has precisely pinpointed the
site of S-sulfenylation in 1,105 peptides on 778 proteins in cultured mammalian cells. These proteins constitute
the largest dataset of S-sulfenylated proteins reported to date. In this renewal application, we propose to use
and expand our state-of-art chemical proteomic platform towards the three major objectives of: (1) defining the
molecular determinants that govern the selection of specific cysteine resides and proteins for S-sulfenylation,
(2) elucidating the functional networks and signaling pathways that are influenced by S-sulfenylation, and (3)
identifying the enzyme system(s) that control protein desulfenylation. By uncovering the endogenous S-
sulfenylome proteomics of mouse liver, brain, lung, and heart and applying multiple analytical and
computational tools, the biochemical and structural properties that govern the specificity of S-sulfenylation in
vivo will be defined. Biological functional and pathway analyses, in conjunction with quantitative stoichiometric
assessment of S-sulfenylomes derived from Nox knockout and transgenic mice, will test H2O2-specific
functional regulation in signaling cascades within and across the four different organs. Simultaneous
acquisition of the endogenous site-specific, reactive cysteinome and phosphoproteome will enable
comprehensive and global evaluation of complementation and coordination. Enzyme system(s) that regulate
desulfenylation will be identified using CRISPR sequence-specific repression or activation of likely candidates.
Overall, the comprehensive large-scale study of protein structures and functional pathways will significantly
improve our appreciation of S-sulfenylation in H2O2-mediated biology. The molecular components of these
pathways may, in turn, represent new biomarkers and drug targets in the rapidly growing fields of ‘redox
biology and medicine’. The research tools and methods advanced in this proposal should also provide of
general value for characterizing redox networks in a range of physiological and disease processes.
抽象的
过氧化氢(H2O2)是一种多功能氧化物,可介导每个主要的生物学功能
器官系统。 H2O2实现功能多样性的新兴分子途径是通过
蛋白质半胱氨酸的特异性修饰保留为形成S-磺苯基半胱氨酸。这个后翻译
修饰,S-磺苯基化,调节蛋白质活性和定位。尽管有很大的进步
单个蛋白质,生物学化学,对特定H2O2生成的NADPH氧化物的依赖性
(NOX),以及控制特定半胱氨酸在体内修饰的结构元素广泛
未知。为了了解这些基本生物学问题,敏感,验证和定量
需要化学蛋白质组学方法,但仍处于发展的早期阶段。为此,在
我们开发并实施了一种新型的化学蛋白质组学方法。这个新
方法已经实现了S-硫硝基化半胱氨酸的特定,高效,完整和选择性识别
活细胞中的残留物。当前,我们的化学蛋白质瘤方法的实施已精确地指出了
培养的哺乳动物细胞中778种蛋白质中的1,105种肽中S-磺苯基的位点。这些蛋白质构成
迄今为止,最大的S-硫二苯基化蛋白数据集。在此续订应用程序中,我们建议使用
并将我们最先进的化学蛋白质组学平台扩展到以下三个主要目标:(1)定义
控制特定半胱氨酸住所和蛋白质以s-磺苯基化的选择的分子决定剂,
(2)阐明受s-磺酰化影响的功能网络和信号通路,以及(3)
识别控制蛋白质脱硫基化的酶系统。通过发现内源S-
小鼠肝脏,脑,肺和心脏的磺苯基蛋白质组学,并应用多个分析性和
计算工具,管理s-磺酰化特异性的生化和结构特性
体内将定义。生物功能和途径分析,结合定量化学计量学
评估源自NOX基因敲除和转基因小鼠的S-磺苯组,将测试H2O2特异性
在四个不同器官内外的信号级联反应中的功能调节。同时
获得内源地点特异性,反应性半结晶组和磷蛋白质组的获取将实现
对完成和协调的全面评估。调节的酶系统
将使用CRISPR序列特异性表示或可能候选者的激活来识别脱硫硝基化。
总体而言,蛋白质结构和功能途径的全面大规模研究将显着
提高我们对H2O2介导的生物学中S-磺苯基化的欣赏。这些分子成分
途径可能代表氧化还原快速生长领域的新生物标志物和药物靶标
生物学和医学”。该提案中提出的研究工具和方法也应提供
在一系列物理和疾病过程中表征氧化还原网络的一般价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kate Suzanne Carroll其他文献
Kate Suzanne Carroll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kate Suzanne Carroll', 18)}}的其他基金
Redox Modification and Targeting of Mutant KRas in Cancer
癌症中突变 KRa 的氧化还原修饰和靶向
- 批准号:
10162539 - 财政年份:2018
- 资助金额:
$ 41.1万 - 项目类别:
Redox Modification and Targeting of Mutant KRas in Cancer
癌症中突变 KRa 的氧化还原修饰和靶向
- 批准号:
10595875 - 财政年份:2018
- 资助金额:
$ 41.1万 - 项目类别:
Redox Modification and Targeting of Mutant KRas in Cancer
癌症中突变 KRa 的氧化还原修饰和靶向
- 批准号:
9912729 - 财政年份:2018
- 资助金额:
$ 41.1万 - 项目类别:
Nucleophilic Inhibitors for Targeting Redox-Sensitive Kinases
用于靶向氧化还原敏感激酶的亲核抑制剂
- 批准号:
9187426 - 财政年份:2013
- 资助金额:
$ 41.1万 - 项目类别:
Nucleophilic Inhibitors for Targeting Redox-Sensitive Kinases
用于靶向氧化还原敏感激酶的亲核抑制剂
- 批准号:
8969670 - 财政年份:2013
- 资助金额:
$ 41.1万 - 项目类别:
Nucleophilic Inhibitors for Targeting Redox-Sensitive Kinases
用于靶向氧化还原敏感激酶的亲核抑制剂
- 批准号:
8776280 - 财政年份:2013
- 资助金额:
$ 41.1万 - 项目类别:
Nucleophilic Inhibitors for Targeting Redox-Sensitive Kinases
用于靶向氧化还原敏感激酶的亲核抑制剂
- 批准号:
8631369 - 财政年份:2013
- 资助金额:
$ 41.1万 - 项目类别:
Probing the role of cysteine sulfenylation in cell signaling
探讨半胱氨酸磺酰化在细胞信号传导中的作用
- 批准号:
8653970 - 财政年份:2012
- 资助金额:
$ 41.1万 - 项目类别:
Probing the role of cysteine sulfenylation in cell signaling
探讨半胱氨酸磺酰化在细胞信号传导中的作用
- 批准号:
8342423 - 财政年份:2012
- 资助金额:
$ 41.1万 - 项目类别:
Chemical Tools for Probing Cysteine Sulfenation and Sulfination Redox Biology
用于探测半胱氨酸磺化和磺化氧化还原生物学的化学工具
- 批准号:
10658440 - 财政年份:2012
- 资助金额:
$ 41.1万 - 项目类别:
相似国自然基金
基于裂隙黄土斜坡模型试验的渐进后退式滑坡成灾机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于裂隙黄土斜坡模型试验的渐进后退式滑坡成灾机理研究
- 批准号:42207184
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
嵌入后退式分离的复杂流动干扰与分离动力学研究
- 批准号:U21B2054
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:联合基金项目
滑模与适定运动统一的稳定条件及基于值函数的受约束切换系统控制研究
- 批准号:61773006
- 批准年份:2017
- 资助金额:51.0 万元
- 项目类别:面上项目
干热河谷冲沟沟头后退的水力、重力协同作用机制
- 批准号:41571277
- 批准年份:2015
- 资助金额:74.0 万元
- 项目类别:面上项目
相似海外基金
Project 3: Pandemic Virus Protease Inhibitors
项目3:流行病病毒蛋白酶抑制剂
- 批准号:
10522812 - 财政年份:2022
- 资助金额:
$ 41.1万 - 项目类别:
Pharmaceutical Nanofactories: Intracellular synthesis of bioactive drug molecules
药物纳米工厂:生物活性药物分子的细胞内合成
- 批准号:
10439302 - 财政年份:2022
- 资助金额:
$ 41.1万 - 项目类别:
Structural and Cellular Choreography for Decommissioning and Recycling of PP2A Holoenzymes
PP2A 全酶退役和回收的结构和细胞编排
- 批准号:
10372153 - 财政年份:2021
- 资助金额:
$ 41.1万 - 项目类别:
Structural and Cellular Choreography for Decommissioning and Recycling of PP2A Holoenzymes
PP2A 全酶退役和回收的结构和细胞编排
- 批准号:
10560531 - 财政年份:2021
- 资助金额:
$ 41.1万 - 项目类别:
Non-Opioids for Inflammatory Pain: Adenylyl Cyclase 1 as a Novel Target
非阿片类药物治疗炎症性疼痛:腺苷酸环化酶 1 作为新靶点
- 批准号:
10405130 - 财政年份:2021
- 资助金额:
$ 41.1万 - 项目类别: