Pharmaceutical Nanofactories: Intracellular synthesis of bioactive drug molecules
药物纳米工厂:生物活性药物分子的细胞内合成
基本信息
- 批准号:10439302
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActive SitesBackBiochemicalBiochemistryBiocompatible MaterialsBiologicalCellsChemicalsChemistryCommunicationComplexConfined SpacesDisadvantagedDrug Delivery SystemsDrug resistanceEducational CurriculumEducational process of instructingEndocytosisEngineeringEnvironmentEnzymesFluorescenceGoalsHela CellsHybridsHydrophobicityIn VitroIndividualInvestigationKnowledgeLeadLifeLigandsLong-Term EffectsMalignant NeoplasmsMetalsMolecularMutationParticipantPharmaceutical PreparationsPharmaceutical SocietiesPharmacologic SubstanceProdrugsPropertyProteinsReactionResearchResearch ActivityResistanceScienceSilicon DioxideSiteStatistical Data InterpretationStructureStudentsSurfaceSystemTechniquesTechnologyTestingTrainingWater Supplyanti-cancerantitumor drugbasebiomaterial compatibilitycatalystcell determinationcell typechemical reactionchemical synthesisdesignenzyme substrateexperiencehigh schoolinnovationinstrumentationinternal controlknowledge baselaboratory experimentlecturesmetal complexnanomaterialsnanoparticlenovelside effectskillsundergraduate student
项目摘要
Project Summary:
Since the discovery of anticancer and chemotherapeutic pharmaceuticals, society has been challenged
by detrimental and life altering side effects, drug resistance via cellular mutations, and distributed non-
metabolized pharmaceuticals back into the environment, which has long-term effects on wildlife and
water supplies. The synthetic control my team has on the pore environment of mesoporous silica
nanoparticles (MSN) offers a unique perspective of delivering active, heterogenous catalytic species to
cells. Using the vast knowledge base already known on internalizing MSN via endocytosis for drug
delivery, we will design biocompatible porous nanomaterials that will enter cells with inorganic and
biological catalysts entrapped inside the pores. Protected molecules that are not biologically active will
become activated once they encounter the catalytic active sites. The confined space offered by the
mesopores will protect the catalytic species (tethered molecular catalysts and exogenous enzymes) from
the reductive environment of the cells. We can selectively functionalize the external and internal pore
environments, allowing us to control the internalization and stabilization intracellularly along with catalytic
properties. Current technology to deliver biologically active molecules contains numerous disadvantages
the site-specific synthesis could eliminate. The scientific innovation includes a systematic investigation
of novel porous, biomaterials entrapping metal catalysts and enzymes to investigate the synthesis and
activation of prodrug and profluorophore molecules intracellularly. The hypothesis is that if catalysts
can be supported and protected in the pore structure of MSN and the nanomaterial will be
internalized by cells, then bioorthogonal chemical reactions can be conducted intracellularly to
produce biologically active molecules on site eliminating the need for delivery of drug molecules
that have detrimental side effects and lead to resistance.
The teaching innovation of this project is in the cooperative and team-oriented research activities
involving participants from high school through the PI. Students will receive hands-on training on
numerous state-of-the-art instrumentations along with chemical syntheses, characterization, and
biochemical techniques. This research will also be used to guide weekly undergraduate biochemistry
laboratory experiments, focused on important interactions between biomolecules and inorganic
substrates for enzyme stabilization and as part of the curriculum in lecture courses. The impact to
students is first-hand experience in working cooperatively and essential skills that go into scientific
research and understanding, such as the importance of proper controls, statistical analysis, and
communication skills that are required in science and engineering.
项目概要:
自从抗癌和化疗药物发现以来,社会一直面临着挑战
通过有害的和改变生活的副作用、细胞突变产生的耐药性以及分布式非
代谢后的药物回到环境中,这对野生动物和动物产生长期影响
供水。我团队对介孔二氧化硅孔隙环境的合成控制
纳米颗粒(MSN)提供了一种独特的视角,可以将活性、异质催化物质传递给
细胞。利用已知的通过药物内吞作用内化 MSN 的庞大知识库
交付后,我们将设计生物相容性多孔纳米材料,该材料将与无机和
生物催化剂被困在毛孔内。不具有生物活性的受保护分子将
一旦遇到催化活性位点就会被激活。所提供的有限空间
介孔将保护催化物质(束缚分子催化剂和外源酶)免受
细胞的还原环境。我们可以选择性地功能化外部和内部孔隙
环境,使我们能够控制细胞内的内化和稳定以及催化
特性。目前递送生物活性分子的技术存在许多缺点
位点特异性合成可以消除。科学创新包括系统研究
新型多孔生物材料包埋金属催化剂和酶,以研究其合成和
细胞内前药和前荧光团分子的激活。假设如果催化剂
可以在MSN的孔结构中得到支撑和保护,纳米材料将被
被细胞内化,然后可以在细胞内进行生物正交化学反应
现场产生生物活性分子,无需输送药物分子
具有有害的副作用并导致耐药性。
本项目的教学创新在于合作、团队导向的研究活动
通过 PI 吸引来自高中的参与者。学生将接受以下方面的实践培训
许多最先进的仪器以及化学合成、表征和
生化技术。这项研究还将用于指导每周本科生生物化学
实验室实验,重点关注生物分子和无机物之间的重要相互作用
酶稳定的底物并作为讲座课程的一部分。对的影响
学生可以获得合作工作的第一手经验以及进入科学领域的基本技能
研究和理解,例如适当控制、统计分析的重要性,以及
科学和工程所需的沟通技巧。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atrazine Degradation Using Immobilized Triazine Hydrolase from Arthrobacter aurescens TC1 in Mesoporous Silica Nanomaterials.
- DOI:10.1021/acsenvironau.3c00036
- 发表时间:2023-11-15
- 期刊:
- 影响因子:0
- 作者:Diviesti, Karla;Russell-Parks, Glory A;Trewyn, Brian G;Holz, Richard C
- 通讯作者:Holz, Richard C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Trewyn其他文献
Brian Trewyn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A harmonized vendor-agnostic environment for multi-site functional MRI studies
用于多站点功能 MRI 研究的与供应商无关的协调环境
- 批准号:
10306940 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
- 批准号:
10710387 - 财政年份:2017
- 资助金额:
$ 41.88万 - 项目类别: