Machine Learning Algorithms to Measure Physical Activity in Children with Cerebral Palsy
用于测量脑瘫儿童身体活动的机器学习算法
基本信息
- 批准号:9346616
- 负责人:
- 金额:$ 17.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-07 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAccelerometerActivities of Daily LivingAdolescentAlgorithmsBehaviorBiological Neural NetworksBrain InjuriesCerebral PalsyChildChild BehaviorChildhoodClassificationClinicalComorbidityDataDevelopmentEffectivenessEnergy MetabolismEngineeringFatigueFrequenciesGaitGait speedGoalsHealthHealth BenefitInterventionKnowledgeLaboratoriesLearningLightLive BirthLogistic RegressionsMachine LearningMeasurementMeasuresMechanicsMethodologyMethodsMissionModelingMonitorMotionMotorMovementMusculoskeletalObesityOperative Surgical ProceduresOrthopedic Surgery proceduresOsteoporosisOutcomeOutcome MeasurePatientsPatternPattern RecognitionPerformancePhysical activityPhysical assessmentPhysical therapy exercisesPhysically HandicappedPrevalencePublic HealthRehabilitation therapyResearchResearch PersonnelSamplingScienceSignal TransductionSupervisionTestingTherapeutic InterventionTimeTrainingUnited States National Institutes of HealthWorkYouthbasechronic painclinical applicationcomputer sciencecomputerized data processingcostexperiencefitnessimprovedinnovationlight intensitymultidisciplinaryneuromuscularnovelpediatric patientspost interventionprediction algorithmprimary outcomerehabilitation scienceresearch studysedentarysensortime usevigorous intensitywalking speed
项目摘要
PROJECT SUMMARY/ABSTRACT
Cerebral palsy (CP) is the most common physical disability of childhood with a prevalence of 2.5
to 3.6 cases per 1000 live births. Inadequate physical activity (PA) and poor fitness are major
problems impacting the health and well-being of children with CP. Moreover, low PA may
contribute to the development of disabling secondary conditions such as obesity, chronic pain,
fatigue, and osteoporosis. Children with CP frequently undergo therapeutic interventions and/or
orthopedic surgery to improve their mobility and increase habitual PA. The primary outcome
measures used pre-post interventions are typically clinical measures of gross motor function or
functional capacity. None of these tests, however, measure PA performance.
Accelerometry-based motion sensors are the method of choice for assessing PA in
children. Our group has shown that accelerometers provide valid and reliable assessments of
ambulatory activity in youth with CP. We have developed and validated CP-specific count
thresholds to estimate time spent in sedentary, light-intensity, and moderate-to-vigorous
intensity PA. However, there is a knowledge gap on optimal approaches in accelerometer data
processing to measure PA in children with CP especially given the misclassification error and
because cut-points do not perform well in children with more severe functional limitations.
The long-term goal of this project is to improve PA measures in children with CP. The
overall objective of this application is to use machine learning in accelerometer data processing
to improve PA measures in children with CP. The proposed study will be the first to develop,
evaluate, and deploy machine learning algorithms to measure activity type and energy
expenditure in children with CP. The specific aims of this project are to: 1) Develop and test
machine learning algorithms to predict PA type, walking speed, and energy expenditure in
ambulant children and adolescents with CP; 2) compare the accuracy of PA intensity estimates
provided by machine learning algorithms to those provided by conventional cut-point methods;
and 3) evaluate the performance of the resultant CP prediction models in an independent
sample of children with Acquired Brain Injury (ABI).
The proposed project is in line with the NIH mission because the resultant prediction
models will enable clinicians and rehabilitation professionals to more effectively monitor the PA
levels of their patients to improve health and function. Improved objective measures of PA will
also enable health researchers to better understand the short-and long-term health benefits of
regular PA and impact of PA on adverse health conditions associated with CP.
项目摘要/摘要
脑瘫(CP)是童年最常见的身体残疾,患病率为2.5
每000例活产3.6例。体育锻炼不足(PA)和健身不足是主要的
影响CP儿童健康和福祉的问题。而且,低PA可能
有助于肥胖,慢性疼痛等禁用次要疾病的发展
疲劳和骨质疏松症。 CP的儿童经常接受治疗干预措施和/或
骨科手术以提高其活动能力并增加习惯性PA。主要结果
使用前干预措施的措施通常是总运动功能的临床措施或
功能能力。但是,这些测试均未测量PA性能。
基于加速度计的运动传感器是评估PA的首选方法
孩子们。我们的小组表明,加速度计提供了有效可靠的评估
CP青年的门诊活动。我们已经开发并验证了CP特定的计数
阈值以估算久坐,轻度和中等程度上花费的时间
强度PA。但是,加速度计数据中最佳方法存在知识差距
在CP儿童中测量PA的处理,特别是考虑到错误分类错误和
因为在功能限制更严重的儿童中,切点表现不佳。
该项目的长期目标是改善CP儿童的PA措施。这
该应用程序的总体目的是在加速度计数据处理中使用机器学习
改善CP儿童的PA措施。拟议的研究将是第一个开发的研究,
评估和部署机器学习算法以衡量活动类型和能源
CP儿童的支出。该项目的具体目的是:1)开发和测试
机器学习算法以预测PA类型,步行速度和能源消耗
CP的救护儿童和青少年; 2)比较PA强度估计的准确性
由机器学习算法提供给常规切点方法提供的算法;
3)评估所得CP预测模型的性能
脑损伤儿童(ABI)的样本。
拟议的项目与NIH的任务一致,因为结果预测
模型将使临床医生和康复专业人员能够更有效地监视PA
他们的患者水平以改善健康和功能。改善PA的客观度量将
还使健康研究人员能够更好地了解短期和长期健康益处
常规的PA和PA对与CP相关的不良健康状况的影响。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margaret Eileen ONeil其他文献
Margaret Eileen ONeil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margaret Eileen ONeil', 18)}}的其他基金
Interventions for Parents of Overweight Children
对超重儿童家长的干预措施
- 批准号:
7139994 - 财政年份:2005
- 资助金额:
$ 17.21万 - 项目类别:
Interventions for Parents of Overweight Children
对超重儿童家长的干预措施
- 批准号:
6989187 - 财政年份:2005
- 资助金额:
$ 17.21万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向结构和地震运动监测的低成本GNSS和加速度计集成方法研究
- 批准号:42311530062
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
绝缘体辐射诱导电荷致工作态三明治式MEMS加速度计敏感结构非单向性损伤机制研究
- 批准号:12305313
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
柔性MEMS谐振式加速度计的共形设计与热弹性耦合动力学分析
- 批准号:12202240
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
- 批准号:
10643624 - 财政年份:2023
- 资助金额:
$ 17.21万 - 项目类别:
Using instrumented everyday gait to predict falls in older adults using the WHS cohort
使用 WHS 队列,使用仪器化的日常步态来预测老年人跌倒
- 批准号:
10657828 - 财政年份:2023
- 资助金额:
$ 17.21万 - 项目类别:
Wearable Sensors for Quantitative Assessment of Motor Impairment in Huntington's Disease
用于定量评估亨廷顿病运动损伤的可穿戴传感器
- 批准号:
9409865 - 财政年份:2017
- 资助金额:
$ 17.21万 - 项目类别:
An interactive, wearable device for measuring and motivating hand use after stroke
用于测量和激励中风后手部使用的交互式可穿戴设备
- 批准号:
9046229 - 财政年份:2016
- 资助金额:
$ 17.21万 - 项目类别:
Relationships between daily life behaviors and physical activity measured using a triaxial accelerometer in elderly, community-dwelling Japanese individuals
使用三轴加速度计测量日本社区老年人的日常生活行为和身体活动之间的关系
- 批准号:
15K11774 - 财政年份:2015
- 资助金额:
$ 17.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)