Synaptic plasticity and development of inhibition in the medial superior olive

内侧上橄榄突触可塑性和抑制的发展

基本信息

  • 批准号:
    9124201
  • 负责人:
  • 金额:
    $ 6.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Hearing using 2 ears allows the extraction of sound timing information that animals, including humans, use to localize sounds in space and comprehend communication signals in complicated auditory environments. Understanding how the binaural hearing system develops is critical for implementing treatments for individuals with impairments. The medial superior olive (MSO) nucleus in the brainstem of mammals houses one of the first stages of processing combined information from both ears. MSO neurons enable detection of extremely minute timing differences between the arrivals of sounds at the 2 ears by responding maximally to binaural excitation at specific interaural time differences (ITDs). Glycinergic inhibitory inputs onto MSO neurons are critical for shaping their ITD responses. Prior to hearing onset, supernumerary inhibitory inputs are evenly distributed over the dendrites and soma of MSO neurons. After hearing onset, inhibition is dramatically refined. Most of the inhibitory inputs are pruned and those that remain are well timed with binaural excitation and concentrated onto the soma. Despite the relevance to the functioning of this important circuit, almost nothing is known about the cellular mechanisms that guide refinement of inhibition in the MSO. Synaptic plasticity is likely to be the key to maintaining a specific set of synapses in an experience-dependent process. The work proposed here seeks to understand inhibitory synaptic plasticity in the MSO and how it contributes to the development of inhibitory drive after hearing onset. This project utilizes electrophysiological and calcium imaging techniques in acute brain slices from Mongolian gerbils combined with in vivo manipulation of binaural auditory experience. Aim 1 will reveal mechanisms of synaptic plasticity that guide the strengthening and synchronization of inhibitory drive with binaural excitation in the MSO. Preliminary results suggest a model of N-methyl D-aspartate receptor (NMDAR)- dependent inhibitory long-term potentiation (iLTP) in the MSO in which glutamate, either co-released with glycine or through spillover from adjacent excitatory inputs, binds NMDARs and action potential (AP)-driven depolarization from binaural excitatory drive relieves the magnesium block. The locus of NMDAR activation and source of glutamate will be determined. Aim 2 seeks to understand what guides the developmental concentration of inhibitory inputs onto the soma of MSO neurons. Over the first 2 weeks of hearing, changes to intrinsic membrane properties of MSO neurons reduce the invasion of AP depolarization into the dendrites. My hypothesis is that inhibitory synapses in the dendrites progressively do not receive sufficient depolarization for iLTP and without this continued reinforcement are selectively pruned. To test this hypothesis, I will rear animals in omnidirectional noise, a manipulation known to disrupt binaural cues. Then I will determine whether iLTP, intrinsic changes, and somatic segregation of inhibition are retarded. Together, this work will give us a deeper understanding of the experience-dependent developmental refinement of inhibition in this important center for processing of binaural cues.
 描述(由申请人提供):使用两只耳朵进行听力可以提取声音定时信息,包括人类在内的动物可以使用这些信息来定位空间中的声音并理解复杂听觉环境中的通信信号。了解双耳听力系统的发展对于实现至关重要。哺乳动物脑干中的内侧上橄榄核(MSO)是处理来自双耳的组合信息的第一阶段之一,能够检测到声音到达之间极其微小的时间差异。两耳的声音通过在特定的耳间时间差 (ITD) 下对双耳兴奋做出最大反应,MSO 神经元上的甘氨酸抑制输入对于形成听觉开始之前的 ITD 反应至关重要,多余的抑制输入均匀分布在树突和体细胞上。 MSO 神经元的听觉出现后,大多数抑制输入都被修剪,而那些与双耳兴奋和集中保持良好同步的输入。尽管与这一重要回路的功能相关,但对于 MSO 中的抑制指导可能是维持体验中一组特定突触的关键的细胞机制几乎一无所知。这里提出的工作旨在了解 MSO 中的抑制性突触可塑性以及它如何促进听力出现后抑制性驱动的发展。该项目利用蒙古人急性脑切片中的电生理学和钙成像技术。沙鼠与双耳听觉体验的体内操纵相结合,将揭示指导 MSO 中双耳兴奋的抑制驱动的加强和同步的突触可塑性机制。 )- MSO 中谷氨酸依赖的抑制性长时程增强 (iLTP),其中谷氨酸与甘氨酸共同释放或通过相邻兴奋性溢出输入、结合 NMDAR 和双耳兴奋性驱动的动作电位 (AP) 驱动的去极化可缓解镁阻滞。目标 2 旨在了解是什么引导抑制性输入的发育浓度。在听力的前两周,MSO 神经元内在膜特性的变化减少了 AP 去极化对树突的侵入。树突中的抑制性突触逐渐无法获得 iLTP 的足够去极化,并且如果没有这种持续强化,就会被选择性地修剪。为了检验这一假设,我将在全向噪声中饲养动物,这是一种已知会破坏双耳线索的操作,然后我将确定是否有 iLTP。 、内在变化和抑制的躯体分离被延迟,这项工作将使我们更深入地了解这个重要的双耳处理中心的抑制的依赖于经验的发展细化。提示。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bradley D Winters其他文献

Aspects of Cortico-Accumbens Processing Cortically Activated Interneurons Shape Spatial
伏隔皮质处理皮质激活的中间神经元形状空间的方面
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Powell;Amber M. Asher;D. Lodge;K. Czaja;J. Krueger;Yanhua H. Huang;O. Schlüter;Yan Dong;Bradley D Winters;Juliane M. Krüger;Xiaojie Huang;Zachary R. Gallaher;Masago Ishikawa
  • 通讯作者:
    Masago Ishikawa

Bradley D Winters的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bradley D Winters', 18)}}的其他基金

Cellular diversity underlying timing- and intensity-based sound localization in the superior olivary complex
上橄榄复合体中基于时间和强度的声音定位的细胞多样性
  • 批准号:
    10817312
  • 财政年份:
    2023
  • 资助金额:
    $ 6.1万
  • 项目类别:
Cellular properties mediating specialization of lateral superior olive principal neuron types for timing and intensity based sound localization
介导外侧上橄榄主要神经元类型专业化的细胞特性,用于基于时间和强度的声音定位
  • 批准号:
    9919441
  • 财政年份:
    2019
  • 资助金额:
    $ 6.1万
  • 项目类别:
Synaptic plasticity and development of inhibition in the medial superior olive
内侧上橄榄突触可塑性和抑制的发展
  • 批准号:
    9249394
  • 财政年份:
    2016
  • 资助金额:
    $ 6.1万
  • 项目类别:

相似国自然基金

Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
  • 批准号:
    82300764
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
  • 批准号:
    82300182
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
  • 批准号:
    82370165
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
  • 批准号:
    82370175
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Cellular and circuit function of Ndnf-expressing interneurons in a mouse model of a neurodevelopmental disorder
神经发育障碍小鼠模型中表达 Ndnf 的中间神经元的细胞和回路功能
  • 批准号:
    10678812
  • 财政年份:
    2023
  • 资助金额:
    $ 6.1万
  • 项目类别:
Mechanisms of Hypoxia-Mediated Disturbances in Cerebral Maturation in a Fetal Ovine Model of Maternal Sleep Apnea
母体睡眠呼吸暂停胎羊模型中缺氧介导的大脑成熟障碍的机制
  • 批准号:
    10608612
  • 财政年份:
    2023
  • 资助金额:
    $ 6.1万
  • 项目类别:
Automated cell-type-specific electrophysiology for understanding circuit dysregulation in Alzheimer's Disease
自动化细胞类型特异性电生理学用于了解阿尔茨海默氏病的电路失调
  • 批准号:
    10525870
  • 财政年份:
    2022
  • 资助金额:
    $ 6.1万
  • 项目类别:
Functional deficits in neurovascular coupling in Alzheimer's disease
阿尔茨海默病神经血管耦合的功能缺陷
  • 批准号:
    10662199
  • 财政年份:
    2022
  • 资助金额:
    $ 6.1万
  • 项目类别:
Rescuing neurovascular coupling to protect neuronal plasticity and cognition
拯救神经血管耦合以保护神经元可塑性和认知
  • 批准号:
    10530887
  • 财政年份:
    2022
  • 资助金额:
    $ 6.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了