Biological Mechanism of FSGS-1
FSGS-1的生物学机制
基本信息
- 批准号:9319727
- 负责人:
- 金额:$ 41.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-21 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActininActinsAddressAdhesionsAdriamycin PFSAffinityAlbuminsAlpha CellAngiopoietin-2Animal ModelAnimalsAwardBindingBiologicalBiophysicsCRISPR screenCRISPR/Cas technologyCalciumCell AdhesionCell SurvivalCell membraneCellsCharacteristicsClustered Regularly Interspaced Short Palindromic RepeatsContractsCuesCytoskeletonDefectDiseaseEventFocal AdhesionsFocal Segmental GlomerulosclerosisGene ExpressionGene Expression ProfileGenesGenetic TranscriptionGoalsHeparinHumanIn VitroInduced MutationInfusion proceduresKidneyKidney DiseasesKidney FailureLiquid substanceMeasurementMeasuresMechanicsMediatingModelingMusMutant Strains MiceMutationNatural experimentNephrotoxicOrganismPathologyPhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPropertyProtamine SulfateProteinsProteinuriaRecoveryRegulationRenal functionRoleSerineSerumSignal TransductionSiteSmall Interfering RNASolidStressStretchingSurveysTestingToxic effectTractionTransforming Growth Factor betaWorkalpha Actininbiophysical propertiescell behaviorcell motilitydisease-causing mutationfluidityfunctional declinehuman diseasein vivoknockout animalmigrationmouse modelmutantnephrotoxicitypodocytepreventresponsespatiotemporaltooltranscriptome
项目摘要
This project continues to build on our-long-term goal of identifying and understanding genes which when
altered cause human kidney disease. Mutations in alpha-actinin-4 (ACTN4) cause a form of kidney disease
characterized by progressive decline in function, proteinuria, and focal segmental glomerulosclerosis
(FSGS). We have made substantial progress during the current award period in understanding the role of
mutation-induced alterations in ACTN4-actin affinity on the biophysical properties of the actin network at in
vitro and cellular levels. We demonstrated that genetic alterations in ACTN4 have profound effects on cell
behavior including contractility, motility, response to stretch, and gene transcription, and ultimately produce
glomerular pathology in the organism. We have generated strong evidence that phosphorylation events can
reversibly modulate the ACTN4-actin affinity. These findings suggest a model where the global effects of
ACTN4 disease-mutations on strain hardening and network brittleness are detrimental, and where ACTN4
phosphorylation allows for similar, but local and spatiotemporally regulated, changes to the actinin-actin
network.
Our working hypothesis is that a normally hidden actin-biding site (ABS1) is required for strain-dependent
network hardening but at the expense of generating a more brittle cytoskeleton. Mutation or phosphorylation
exposes this site. We will further define the role of ACTN4 S159 phosphorylation in regulating the cellular
actin cytoskeleton, cellular adhesion and contractility, and lastly, in regulating in vivo podocyte function. We
will use these studies as a springboard for identifying the signals, kinases and phosphatases regulating
ACTN4 phosphorylation. Finally, we will elucidate the importance of ABS1-mediated strain hardening in cells
and in vivo. This next set of studies extend and expand upon the aims of the original proposal, and will
advance our understanding of not only ACTN4-mutation induced FSGS but also elucidate the importance of
spatiotemporal regulation of the actinin-actin network through phosphorylation events.
Specifically, we will: 1. Define the cellular role and regulation of ACTN4 by serine 159 phosphorylation; 2.
Define the relationship between ACTN4-mediated, biophysical behavior of cells, alterations to the local
microenvironment, and its regulation by phosphorylation; 3. Define the role of regulation of the ABD of
ACTN4 by phosphorylation and mutation in the function of the kidney in vivo using new CRISPR-derived
animal models we have developed; 4. Extend our understanding of the effects of ACTN4 alterations in
regulating gene expression.
该项目继续以我们为了识别和理解基因的长期目标建立
改变引起人类肾脏疾病。 α-肌动蛋白4(ACTN4)的突变引起肾脏疾病的形式
其功能,蛋白尿和局灶性节段性肾小球硬化的特征是
(FSG)。我们在当前奖励期间取得了重大进展,以理解
突变引起的ACTN4-肌动蛋白亲和力的改变对肌动蛋白网络的生物物理特性
体外和细胞水平。我们证明了ACTN4的遗传改变对细胞具有深远的影响
包括收缩力,运动性,对拉伸和基因转录的行为,并最终产生
生物体中的肾小球病理。我们已经产生了有力的证据,表明磷酸化事件可以
可逆地调节ACTN4-肌动蛋白亲和力。这些发现提出了一个模型,其中的全球影响
ACTN4疾病 - 菌株硬化和网络脆性的疾病 - 有害,而actn4
磷酸化允许类似但局部和时空调节,阳脱素 - 肌动蛋白的变化
网络。
我们的工作假设是,依赖性依赖性需要一个通常隐藏的肌动蛋白抗原位点(ABS1)
网络硬化,但要产生更脆的细胞骨架。突变或磷酸化
公开此网站。我们将进一步定义ACTN4 S159磷酸化在调节细胞中的作用
肌动蛋白细胞骨架,细胞粘附和收缩力,最后是调节体内足细胞功能。我们
将这些研究用作识别调节信号,激酶和磷酸酶的跳板
ACTN4磷酸化。最后,我们将阐明细胞中ABS1介导的应变硬化的重要性
和体内。下一组研究扩展并扩展了原始提案的目的,并将
促进我们对ATACN4突变引起的FSG的理解,还阐明了
通过磷酸化事件对阳历原 - 肌动蛋白网络的时空调节。
具体而言,我们将:1。通过丝氨酸159磷酸化定义ACTN4的细胞作用和调节; 2。
定义ACTN4介导的细胞生物物理行为之间的关系,对局部的改变
微环境及其通过磷酸化调节; 3。定义调节ABD的作用
ACTN4通过新的CRISPR衍生
我们开发的动物模型; 4。扩展我们对ACTN4改变影响的理解
调节基因表达。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARTIN R. POLLAK其他文献
MARTIN R. POLLAK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARTIN R. POLLAK', 18)}}的其他基金
APOL1 variants: Understanding the basis of disparities in rates of kidney disease
APOL1 变异:了解肾脏疾病发病率差异的基础
- 批准号:
8282062 - 财政年份:2012
- 资助金额:
$ 41.39万 - 项目类别:
APOL1 variants: Understanding the basis of disparities in rates of kidney disease
APOL1 变异:了解肾脏疾病发病率差异的基础
- 批准号:
8451330 - 财政年份:2012
- 资助金额:
$ 41.39万 - 项目类别:
APOL1 variants: Understanding the basis of disparities in rates of kidney disease
APOL1 变异:了解肾脏疾病发病率差异的基础
- 批准号:
8791543 - 财政年份:2012
- 资助金额:
$ 41.39万 - 项目类别:
APOL1 variants: Understanding the basis of disparities in rates of kidney disease
APOL1 变异:了解肾脏疾病发病率差异的基础
- 批准号:
8607479 - 财政年份:2012
- 资助金额:
$ 41.39万 - 项目类别:
Molecular Genetics of Inherited Focal Glomerulosclerosis
遗传性局灶性肾小球硬化症的分子遗传学
- 批准号:
8223174 - 财政年份:2010
- 资助金额:
$ 41.39万 - 项目类别:
Molecular Genetics of Inherited Focal Glomerulosclerosis
遗传性局灶性肾小球硬化症的分子遗传学
- 批准号:
8287701 - 财政年份:2010
- 资助金额:
$ 41.39万 - 项目类别:
相似海外基金
Defining the Role of ROR2 in Right Ventricular Failure Pathogenesis
定义 ROR2 在右心室衰竭发病机制中的作用
- 批准号:
10463790 - 财政年份:2021
- 资助金额:
$ 41.39万 - 项目类别:
Phosphorylation of the podocyte cytoskeleton in diabetic nephropathy
糖尿病肾病足细胞细胞骨架的磷酸化
- 批准号:
10287650 - 财政年份:2021
- 资助金额:
$ 41.39万 - 项目类别:
Erythrocyte maturation through global remodeling of the proteome
通过蛋白质组的整体重塑实现红细胞成熟
- 批准号:
10211683 - 财政年份:2021
- 资助金额:
$ 41.39万 - 项目类别:
Erythrocyte maturation through global remodeling of the proteome
通过蛋白质组的整体重塑实现红细胞成熟
- 批准号:
10378459 - 财政年份:2021
- 资助金额:
$ 41.39万 - 项目类别:
Erythrocyte maturation through global remodeling of the proteome
通过蛋白质组的整体重塑实现红细胞成熟
- 批准号:
10598561 - 财政年份:2021
- 资助金额:
$ 41.39万 - 项目类别: