Orienting Chromosomes on the Meiotic Spindle
减数分裂纺锤体上染色体的定向
基本信息
- 批准号:9309513
- 负责人:
- 金额:$ 34.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-20 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AllelesAneuploidyBehaviorBiological AssayBiologyBreast Cancer CellCandidate Disease GeneCell CycleCell Cycle ProgressionCell divisionCellsCentromereChromosome SegregationChromosomesCollaborationsCollectionComplexCongenital AbnormalityDefectDevelopmentEnsureFutureGenesGenetic studyGerm CellsGrowthHumanKinetochoresLateralLeadLightLocationMaintenanceMalignant NeoplasmsMapsMediatingMeiosisMental RetardationMicrotubulesMinorMitosisMitoticMitotic ChromosomeMolecularMolecular GeneticsMonitorMutationOrganismPhenotypePhosphorylationPhosphotransferasesPlus End of the MicrotubulePositioning AttributeProcessProteinsProteomeRPS27 geneResearch PersonnelRoleSideSiteSuppressor MutationsSystemTestingTherapeuticYeastsanti-cancer therapeuticantitumor drugaurora B kinasecancer therapychromosome movementdaughter cellexperimental studyimaging approachimaging studyimprovedinsightlive cell imagingloss of functionmutantoverexpressionpreventtumor
项目摘要
PROJECT SUMMARY
MPS1 encodes a conserved kinase that is essential for multiple cell cycle related functions. One critical role for
Mps1 is to promote the formation of force-generating associations of kinetochores with microtubules in
meiosis. These connections are critical for chromosomes to become properly oriented on the meiotic spindle,
but the molecular mechanisms by which Mps1 forms these associations is a mystery. Errors in meiotic
chromosome bi-orientation lead to gametes with the wrong number of chromosomes, referred to as
aneuploidy, which in humans is the leading cause of birth defects and mental retardation. Mps1 is necessary to
prevent this aneuploidy, as loss of Mps1 leads to high levels of aneuploid gametes. Mps1 is also implicated in
human cancer. Many human cancers are aneuploid, with very high chromosome numbers, and over-express
Mps1. Aneuploid breast tumor cells are especially dependent upon Mps1 – presumably because of the
demands placed upon the bi-orientation machinery by the high chromosome numbers in these cells. These
results have led to the pursuit of anti-Mps1 compounds that might act as anti-tumor drugs. Determining the
mechanism-of-action of Mps1 in bi-orientation would clarify the specific Mps1 protein interactions that might be
the best targets for the development of refined anti-tumor therapeutics.
This project seeks determine the mechanisms used to form force-generating kinetochore-microtubule
attachments in yeast meiosis, and the role of Mps1 in that process. The project has four Aims. The first will use
imaging approaches to monitor the interactions between a centromere and a single microtubule, to pinpoint the
step in developing kinetochore-microtubule attachments that is defective in mps1 mutants. A second Aim will
explore the roles of known phosphorylation targets of Mps1 that reside at the kinetochore-microtubule
interface, in the formation of productive kinetochore-microtubule attachments. This aim will be supported by a
collaboration with investigators who will uncover new phosphorylation targets of Mps1 by mapping the Mps1
phospho-proteome. A third Aim is to characterize a collection of strains that carry suppressor mutations that
improve chromosome segregation in mps1-R170S mutants – these suppressor mutations likely map to genes
that are involved in kinetochore-microtubule interactions and their analysis will shed light on how Mps1 is
regulating this process. The final objective is to determine whether Mps1 contributes to mitotic chromosome
segregation in the same way that it promotes proper chromosome segregation in meiosis. Because the
proteins being examined in this proposal are for the most part shared between yeast and humans, the insights
gained in the yeast system could have important implications for better understanding the origins aneuploidy
and treatment of cancer in humans.
项目概要
MPS1 编码一种保守激酶,对于多种细胞周期相关功能至关重要。
MPS1 的作用是促进着丝粒与微管之间产生力的关联的形成
这些连接对于染色体在减数分裂纺锤体上正确定向至关重要,
但 Mps1 形成这些关联的分子机制仍然是一个谜。
染色体双向导致配子的染色体数量错误,称为
非整倍体是人类出生缺陷和智力低下的主要原因。
防止这种非整倍体,因为 Mps1 的丢失会导致高水平的非整倍体配子。
许多人类癌症是非整倍体,具有非常高的染色体数量,并且过度表达。
Mps1. 非整倍体乳腺肿瘤细胞特别依赖于 Mps1——大概是因为
这些细胞中的高染色体数量对双向机制提出了要求。
研究结果促使人们寻找可能作为抗肿瘤药物的抗 Mps1 化合物。
Mps1 双向作用机制将阐明特定的 Mps1 蛋白相互作用,这可能是
开发精细抗肿瘤疗法的最佳目标。
该项目旨在确定用于形成力产生着丝粒微管的机制
酵母减数分裂中的附件,以及 Mps1 在该过程中的作用 该项目有四个目标。
成像方法监测着丝粒和单个微管之间的相互作用,以查明
mps1 突变体中发育有缺陷的动粒-微管附着的步骤第二个目标是。
探索位于动粒微管的已知 Mps1 磷酸化靶标的作用
界面,形成有效的动粒-微管附件。这一目标将得到支持。
与研究人员合作,通过绘制 Mps1 的图谱来发现 Mps1 的新磷酸化靶点
第三个目标是鉴定携带抑制突变的菌株集合。
改善 mps1-R170S 突变体中的染色体分离 - 这些抑制突变可能映射到基因
参与动粒-微管相互作用的细胞,它们的分析将揭示 Mps1 的作用机制
最终目标是确定 Mps1 是否有助于染色体有丝分裂。
分离的方式与它促进减数分裂中适当的染色体分离的方式相同。
该提案中所检查的蛋白质大部分是酵母和人类之间共享的,这些见解
在酵母系统中获得的结果可能对更好地理解非整倍体的起源具有重要意义
以及人类癌症的治疗。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Better safe than sorry-preventing mitotic segregation of meiotic chromosomes.
安全总比遗憾地阻止减数分裂染色体的有丝分裂分离更好。
- DOI:10.1101/gad.336164.119
- 发表时间:2020
- 期刊:
- 影响因子:10.5
- 作者:Meyer,RégisE;Dawson,DeanS
- 通讯作者:Dawson,DeanS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEAN S DAWSON其他文献
DEAN S DAWSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEAN S DAWSON', 18)}}的其他基金
Equipment Supplement for Centromere Interactions and Meiotic Chromosome Segregation in Yeast
酵母着丝粒相互作用和减数分裂染色体分离的设备补充
- 批准号:
10580231 - 财政年份:2022
- 资助金额:
$ 34.25万 - 项目类别:
Centromere Interactions and Meiotic Chromosome Segregation in Yeast
酵母着丝粒相互作用和减数分裂染色体分离
- 批准号:
10210732 - 财政年份:2021
- 资助金额:
$ 34.25万 - 项目类别:
Centromere Interactions and Meiotic Chromosome Segregation in Yeast
酵母着丝粒相互作用和减数分裂染色体分离
- 批准号:
10372222 - 财政年份:2021
- 资助金额:
$ 34.25万 - 项目类别:
Centromere Interactions and Meiotic Chromosome Segregation in Yeast
酵母着丝粒相互作用和减数分裂染色体分离
- 批准号:
10544326 - 财政年份:2021
- 资助金额:
$ 34.25万 - 项目类别:
Equipment Supplement for Centromere Interactions and Meiotic Chromosome Segregation in Yeast
酵母着丝粒相互作用和减数分裂染色体分离的设备补充
- 批准号:
10387848 - 财政年份:2021
- 资助金额:
$ 34.25万 - 项目类别:
相似国自然基金
肿瘤非整倍体悖论的新机制
- 批准号:82372721
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非整倍体对卵巢癌免疫微环境的影响及其作为免疫治疗增效靶点的研究
- 批准号:82373401
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
生长激素通过JAK2/SHP2/ERK1/2通路降低老龄鼠卵母细胞非整倍体率的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纺锤体组装检查点功能异常在胶质瘤非整倍体形成中的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
非整倍体百合雌雄育性差异的细胞与分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Robust-to-fragile transitions of a phase-separated mitotic organelle in triple-negative breast cancer
三阴性乳腺癌相分离有丝分裂细胞器的稳健到脆弱的转变
- 批准号:
10525282 - 财政年份:2022
- 资助金额:
$ 34.25万 - 项目类别:
Robust-to-fragile transitions of a phase-separated mitotic organelle in triple-negative breast cancer
三阴性乳腺癌相分离有丝分裂细胞器的稳健到脆弱的转变
- 批准号:
10703476 - 财政年份:2022
- 资助金额:
$ 34.25万 - 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
- 批准号:
10594852 - 财政年份:2021
- 资助金额:
$ 34.25万 - 项目类别:
Molecular and evolutionary characterization of male recombination and its reversal in the D. nasuta species subgroup
D. nasuta 物种亚群雄性重组及其逆转的分子和进化特征
- 批准号:
10251849 - 财政年份:2020
- 资助金额:
$ 34.25万 - 项目类别:
Understanding the Basis of Fidelity in Eukaryotic Recombinases
了解真核重组酶保真度的基础
- 批准号:
9544168 - 财政年份:2016
- 资助金额:
$ 34.25万 - 项目类别: