Bayesian models to accelerate antibacterial drug discovery
贝叶斯模型加速抗菌药物的发现
基本信息
- 批准号:9243961
- 负责人:
- 金额:$ 42.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Accelerated PhaseAddressAnimal ModelAnti-Bacterial AgentsAntimalarialsBacteriaBacterial InfectionsBayesian MethodBayesian ModelingBiological AssayCellsChemical StructureChemicalsCollectionCommunicable DiseasesComputational TechniqueComputational algorithmComputer softwareDataData SetDisincentiveDrug IndustryDrug resistanceDrug-sensitiveEvolutionFailureFutureGoalsGrowthIn VitroInfectionInnovative TherapyLeadLearningLibrariesLiteratureMachine LearningMedicalMethodologyMicrobeModelingMycobacterium tuberculosisNatural ProductsPharmaceutical ChemistryPharmaceutical PreparationsPublishingQuinolonesRecording of previous eventsResearchResistanceSafetyStatistical ModelsTechniquesTechnologyTestingTherapeuticTimeValidationWagesbasebeta-Lactamsclinical candidatecomparativecost effectivecytotoxicitydrug discoveryglobal healthheuristicshigh throughput screeninginhibitor/antagonistlearning strategynext generationnovelnovel strategiesnovel therapeuticsoutcome forecastpathogenpatient populationpre-clinicalpredictive modelingprocess optimizationprospective testresistance mechanismscaffoldscreeningsmall moleculesmall molecule therapeuticssuccessvirtual
项目摘要
Infections caused by a range of bacteria represent a significant medical need that is not being sufficiently addressed by the pharmaceutical industry. M. tuberculosis, the ESKAPE bacteria, and Select Agent bacteria constitute three classes of microbes that are relevant to global health in large part because of their resistance to available therapeutics. Most new antibacterials are developed by classical discovery methodologies, such as randomly assaying small molecule collections for growth inhibition ofthe appropriate bacterium. We have chosen to look at antibacterial drug discovery differently and sought a novel strategy utilizing Bayesian models to discover and optimize small molecule antibacterials that is more efficient. For example, we viewed the M. tuberculosis data generated from these random "screens" as a computational learning opportunity. We have used computational algorithms to analyze what attributes ofthe molecules tested are consistent with activity and inactivity. Significantly, this approach yielded validated models for M. tuberculosis that have predicted actives with comparatively high rates of success. Thus, we propose two important extensions of this technology: 1) the optimization ofthe three most promising antitubercular actives arising from our models and 2) the creation and validation of this Bayesian methodology to uncover novel actives against each ofthe ESKAPE and Select Agent bacteria, which will be subsequently optimized. These optimization processes will afford molecules with significant potential as novel therapeutics.
由一系列细菌引起的感染代表了制药行业尚未充分解决的重要医疗需求。结核分枝杆菌、ESKAPE 细菌和 Select Agent 细菌构成了与全球健康相关的三类微生物,这在很大程度上是因为它们对现有治疗方法具有耐药性。大多数新的抗菌药物都是通过经典的发现方法开发的,例如随机分析小分子集合以抑制适当细菌的生长。我们选择以不同的方式看待抗菌药物的发现,并寻求一种利用贝叶斯模型来发现和优化更有效的小分子抗菌药物的新策略。例如,我们将这些随机“屏幕”生成的结核分枝杆菌数据视为计算学习机会。我们使用计算算法来分析测试分子的哪些属性与活性和非活性一致。值得注意的是,这种方法产生了经过验证的结核分枝杆菌模型,该模型以相对较高的成功率预测了活性物质。因此,我们提出了该技术的两个重要扩展:1)从我们的模型中优化三种最有前途的抗结核活性物质,2)创建和验证这种贝叶斯方法,以发现针对 ESKAPE 和 Select Agent 细菌的新活性物质,这后续会进行优化。这些优化过程将提供具有作为新型疗法的巨大潜力的分子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Stephen Freundlich其他文献
Joel Stephen Freundlich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Stephen Freundlich', 18)}}的其他基金
A Preclinical Program for Targeting Mycobacterium tuberculosis KasA
针对结核分枝杆菌 KasA 的临床前计划
- 批准号:
10466840 - 财政年份:2021
- 资助金额:
$ 42.93万 - 项目类别:
A Preclinical Program for Targeting Mycobacterium tuberculosis KasA
针对结核分枝杆菌 KasA 的临床前计划
- 批准号:
10209330 - 财政年份:2021
- 资助金额:
$ 42.93万 - 项目类别:
A Preclinical Program for Targeting Mycobacterium tuberculosis KasA
针对结核分枝杆菌 KasA 的临床前计划
- 批准号:
10681371 - 财政年份:2021
- 资助金额:
$ 42.93万 - 项目类别:
Bayesian models to accelerate antibacterial drug discovery
贝叶斯模型加速抗菌药物的发现
- 批准号:
8841308 - 财政年份:
- 资助金额:
$ 42.93万 - 项目类别:
Bayesian models to accelerate antibacterial drug discovery
贝叶斯模型加速抗菌药物的发现
- 批准号:
9020195 - 财政年份:
- 资助金额:
$ 42.93万 - 项目类别:
Bayesian models to accelerate antibacterial drug discovery
贝叶斯模型加速抗菌药物的发现
- 批准号:
8655931 - 财政年份:
- 资助金额:
$ 42.93万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Ultra-Long-Acting Polymeric Injectable Multi-Purpose Prevention Technology for Contraception and HIV Prevention
用于避孕和艾滋病毒预防的超长效聚合物注射多用途预防技术
- 批准号:
10392508 - 财政年份:2021
- 资助金额:
$ 42.93万 - 项目类别:
Ultra-Long-Acting Polymeric Injectable Multi-Purpose Prevention Technology for Contraception and HIV Prevention
用于避孕和艾滋病毒预防的超长效聚合物注射多用途预防技术
- 批准号:
10258079 - 财政年份:2021
- 资助金额:
$ 42.93万 - 项目类别:
Ultra-Long-Acting Polymeric Injectable Multi-Purpose Prevention Technology for Contraception and HIV Prevention
用于避孕和艾滋病毒预防的超长效聚合物注射多用途预防技术
- 批准号:
10583510 - 财政年份:2021
- 资助金额:
$ 42.93万 - 项目类别:
Innovative 3D Printed Intravaginal Ring AnelleO-PRO, the first Single Administration of Progesterone for Infertility
创新 3D 打印阴道环 AnelleO-PRO,首个单次注射黄体酮治疗不孕症
- 批准号:
10760954 - 财政年份:2019
- 资助金额:
$ 42.93万 - 项目类别:
Innovative 3D Printed Intravaginal Ring AnelleO-PRO, the first Single Administration of Progesterone for Infertility
创新 3D 打印阴道环 AnelleO-PRO,首个单次注射黄体酮治疗不孕症
- 批准号:
10323463 - 财政年份:2019
- 资助金额:
$ 42.93万 - 项目类别: