Secondary use of EMRs for surgical complication surveillance
二次使用 EMR 进行手术并发症监测
基本信息
- 批准号:9251814
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:AbscessAddressAdoptionAgeAnestheticsAreaBayesian MethodCessation of lifeClinicClinicalClinical ResearchColorectalComplexComplicationComputerized Medical RecordDataDecision MakingDetectionDevelopmentDisease OutbreaksEarly DiagnosisEarly InterventionEducational workshopEngineeringGoalsHealth Care CostsHealthcareHemorrhageHumanIleusKnowledgeLeadManualsMethodsMinorMotivationNatural Language ProcessingNatureNutritionalOperative Surgical ProceduresOutputPatientsPatternPerioperativePharmaceutical PreparationsPhysiciansProcessRegistriesReportingResearchRisk FactorsScienceSeveritiesSpecialistStatistical ModelsStructureSurgeonSurgical complicationSystemTestingTextTimeTranslatingUncertaintyWorkWound Infectionbaseclinical practicecomputer based statistical methodscostdisabilityhealth care qualityhealth information technologyimprovedinnovationpatient safetypublic health relevancerapid growthstatistics
项目摘要
DESCRIPTION (provided by applicant): Recent statistics indicate that worldwide almost 234 million major surgical procedures are performed each year with the rates of major postsurgical complications (PSCs) range from 3% to 16% and rates of permanent disability or death range from 0.4% to 0.8%. Early detection of PSCs is crucial since early intervention could be lifesaving. Meanwhile, with the rapid adoption of electronic medical records (EMRs) and the accelerated advance of health information technology (HIT), detection of PSCs by applying advanced analytics on EMRs makes it possible for near real-time PSC surveillance. We have developed a rule-based PSC surveillance system to detect most frequent colorectal PSCs near real-time from EMRs where a pattern-based natural language processing (NLP) engine is used to extract PSC related information from text and a set of expert rules is used to detect PSCs. Two challenges are identified. First, it is very challenging to integrate a diverse set of relevant
data using expert rules. In the past, probabilistic approaches such as Bayesian Network which can integrate a diverse set of relevant data have become popular in clinical decision support and disease outbreak surveillance. Can we implement probabilistic approaches for PSC surveillance? Secondly, a large portion of the clinical information is embedded in text and it has been quite expensive to manually obtain the patterns used in the NLP system since it requires team effort of subject matter experts and NLP specialists. In the research field, statistical NLP has been quite popular. However, decision making in clinical practice demands tractable evidences while models for statistical NLP are not human interpretable. Can we incorporate statistical NLP to accelerate the NLP knowledge engineering process? We hypothesize that a probabilistic approach for PSC surveillance can be developed for improved case detection which can integrate multiple evidences from structured as well as unstructured EMR data. We also hypothesize that empirical NLP can accelerate the knowledge engineering process needed for building pattern- based NLP systems used in practice. Specific aims include: i) developing and evaluating an innovative Bayesian PSC surveillance system that incorporates evidences from both structured and unstructured EMR data; and ii) incorporating and evaluating statistical NLP in accelerating the NLP knowledge engineering process of pattern-based NLP for PSC surveillance. Given the significance of HIT, our study results will advance the science in developing practical NLP systems that can be translated to meet NLP needs in health care practice. Additionally, given the significance of PSCs, our study results will address significant patient safety and quality issues in surgical practice. Utilizing automated methods to detect postsurgical complications will enable early detection of complications compared to other methods and therefore have great potential of improving patient safety and health care quality while reducing cost. The results could lead to large scale PSC surveillance and quality improvement towards safer and better health care.
描述(由申请人提供):最近的统计数据表明,全球每年进行近 2.34 亿例大型外科手术,主要术后并发症 (PSC) 的发生率为 3% 至 16%,永久残疾或死亡的发生率为 0.4%至 0.8%。早期发现 PSC 至关重要,因为早期干预可以挽救生命。与此同时,随着电子病历 (EMR) 的快速采用和健康信息技术 (HIT) 的加速发展,通过对 EMR 进行高级分析来检测 PSC 使得近实时 PSC 监测成为可能。我们开发了一种基于规则的 PSC 监测系统,可从 EMR 近乎实时地检测最常见的结直肠 PSC,其中使用基于模式的自然语言处理 (NLP) 引擎从文本中提取 PSC 相关信息,并使用一组专家规则用于检测 PSC。确定了两个挑战。首先,整合各种相关的信息是非常具有挑战性的。
使用专家规则的数据。过去,贝叶斯网络等可以整合多种相关数据的概率方法已在临床决策支持和疾病爆发监测中变得流行。我们可以采用概率方法进行 PSC 监测吗?其次,很大一部分临床信息嵌入在文本中,手动获取 NLP 系统中使用的模式非常昂贵,因为它需要主题专家和 NLP 专家的团队努力。在研究领域,统计NLP已经相当流行。然而,临床实践中的决策需要易于处理的证据,而统计 NLP 模型则无法由人类解释。我们能否结合统计 NLP 来加速 NLP 知识工程进程?我们假设可以开发一种用于 PSC 监测的概率方法来改进病例检测,该方法可以整合来自结构化和非结构化 EMR 数据的多个证据。我们还假设经验 NLP 可以加速构建实践中使用的基于模式的 NLP 系统所需的知识工程过程。具体目标包括: i) 开发和评估创新的贝叶斯 PSC 监测系统,该系统融合了结构化和非结构化 EMR 数据的证据; ii) 纳入和评估统计 NLP,以加速用于 PSC 监测的基于模式的 NLP 的 NLP 知识工程过程。鉴于 HIT 的重要性,我们的研究结果将推动开发实用 NLP 系统的科学发展,这些系统可以转化为满足医疗保健实践中的 NLP 需求。此外,鉴于 PSC 的重要性,我们的研究结果将解决手术实践中重大的患者安全和质量问题。与其他方法相比,利用自动化方法检测术后并发症将能够及早发现并发症,因此在提高患者安全和医疗质量同时降低成本方面具有巨大潜力。结果可能导致大规模 PSC 监测和质量改进,以实现更安全、更好的医疗保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HONGFANG LIU其他文献
HONGFANG LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HONGFANG LIU', 18)}}的其他基金
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
The Data, Evaluation, and Coordination Center (DECC) for Connecting Underrepresented Populations to Clinical Trials (CUSP2CT)
用于将代表性不足的人群与临床试验联系起来的数据、评估和协调中心 (DECC) (CUSP2CT)
- 批准号:
10597291 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Secondary use of EMRs for surgical complication surveillance
EMR 二次用于手术并发症监测
- 批准号:
10202598 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Secondary use of EMRs for surgical complication surveillance
EMR 二次用于手术并发症监测
- 批准号:
10001498 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Secondary use of EMRs for surgical complication surveillance
EMR 二次用于手术并发症监测
- 批准号:
10471838 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Semi-structured Information Retrieval in Clinical Text for Cohort Identification
用于队列识别的临床文本中的半结构化信息检索
- 批准号:
8928647 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Semi-structured Information Retrieval in Clinical Text for Cohort Identification
用于队列识别的临床文本中的半结构化信息检索
- 批准号:
8811565 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Natural language processing for clinical and translational research
用于临床和转化研究的自然语言处理
- 批准号:
9033918 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Natural language processing for clinical and translational research
用于临床和转化研究的自然语言处理
- 批准号:
8920720 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Natural language processing for clinical and translational research
用于临床和转化研究的自然语言处理
- 批准号:
8640959 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: