Computerized histologic image predictor of cancer outcome
癌症结果的计算机组织学图像预测器
基本信息
- 批准号:9305968
- 负责人:
- 金额:$ 62.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdjuvantAdjuvant ChemotherapyAdoptionAgeAgreementAlgorithmsAppearanceArchitectureBehaviorBiological AssayBiological MarkersBiopsyBreastBreast Cancer PatientCancer DiagnosticsCellsClinicalClinical TrialsComputer AssistedComputer Vision SystemsComputer softwareComputersCountryCuesDataDevelopmentDiagnosisDiagnostic testsDiseaseDisease OutcomeDisease ProgressionDistantEarly DiagnosisEastern Cooperative Oncology GroupElementsEpigenetic ProcessEstrogen receptor positiveEuropeExcisionExhibitsGene ExpressionGene Expression ProfilingGene ProteinsGenetic HeterogeneityGenomicsGoalsGuidelinesHead CancerHealthHematoxylin and Eosin Staining MethodHistologicHistopathologyImageImage AnalysisIncidenceIncomeIndustrializationInterobserver VariabilityJointsMalignant NeoplasmsMalignant neoplasm of cervix uteriMalignant neoplasm of prostateMeasurementMolecularMorphologyMutationNational Surgical Adjuvant Breast and Bowel ProjectNeck CancerNuclearOperative Surgical ProceduresOutcomePathologicPathologistPathologyPatientsPerformancePhenotypePositive Lymph NodeProductionRandomized Clinical TrialsReadingRecurrenceRegulatory PathwayResearchResourcesReverse Transcriptase Polymerase Chain ReactionRiskRunningShapesSignal TransductionSlideSpecimenStaining methodStainsSumSystemTamoxifenTechniquesTechnologyTelepathologyTextureTimeTissue imagingTissuesTreatment outcomeTumor BiologyVisualWomanbasebehavioral responsecancer cellcancer imagingchemotherapycohortcompanion diagnosticscomputerizeddigitaldisorder riskhistological imagehistological specimenshormone therapyindustry partnermalignant breast neoplasmneoplastic celloutcome predictionprognostic assaysprototyperesponsetranslation assaytreatment responsetreatment strategytumortumor heterogeneity
项目摘要
SUMMARY: There is an increased need for predictive and prognostic assays to distinguish more and less
aggressive phenotypes of cancer due to A) dramatic increase in cancer incidence and; B) improvements in
early diagnosis. Predictive assays in particular will allow for patients with less aggressive disease to be spared
more aggressive treatment. Most prognostic tests in the US and Europe are based on gene expression assays
(e.g. Oncotype DX (ODx)). Recent studies have shown extensive genetic heterogeneity among cancer cells
between tumors and even within the same tumor, suggesting that approaches for recommending therapy for a
patient based on the “average” molecular signal of many cells are overly simplistic.
Interestingly, for a number of cancers, tumor grade (morphologic appearance on tissue as assessed
qualitatively or semi-quantitatively by a pathologist) has been found to be highly correlated with disease
outcome. However pathologic grade tends to suffer from significant inter-observer variability. Digitzation of
histological samples, or whole slide imaging, facilitates a quantitative approach towards evaluating disease
progression and predicting outcome, while also facilitating the adoption of telepathology. Recently, research
groups (including our own) have begun to show that computer extracted measurements of tumor morphology
(e.g. capturing nuclear orientation, texture, shape, architecture) from routine H&E stained cancer tissue images
can predict disease aggressiveness and treatment outcome. By computationally interrogating the entire tumor
landscape and its most invasive elements from a standard H&E slide, these approaches can allow for more
accurate capture of tumor heterogeneity, disease risk and hence the most appropriate treatment strategy.
The goal of this academic-industrial partnership is to develop and validate a computerized histologic
image-based predictor (CHIP) to identify which early-stage, estrogen receptor positive (ER+) breast cancer
patients are candidates for hormonal therapy alone and which women are candidates for adjuvant
chemotherapy based off analysis of the pathology slides derived from biopsy and surgical specimens. Inspirata
Inc., a cancer diagnostics company which has recently licensed a number of histomorphometry based
technologies from the Madabhushi group, will bring quality management systems and production software
standards to help create a pre-commercial companion diagnostic test of the CHIP assay. Additionally Inspirata
Inc. will build a complete regulatory pathway for successful translation of the assay in the US and abroad.
Finally, the pre-commercial prototype of the CHIP assay will be independently validated using the same
strategy and data cohorts as ODx. Our approach has several advantages over molecular assays such as ODx
in that it (1) can interrogate the entire expanse of the pathology image enabling a more accurate capture of
tumor heterogeneity and hence disease risk, (2) is non-disruptive of pathology workflow, (3) non-destructive of
tissue and would be substantially (4) cheaper (critical in low to middle income countries) and (5) faster.
摘要:对预测性和预后评估的需求越来越多,以区分越来越小的
由于a)癌症事件的巨大增加而引起的癌症的侵略性表型; b)进步
早期诊断。特别是预测性测定将使侵略性较低的患者幸免
更具积极的治疗。美国和欧洲的大多数预后测试都是基于基因表达测定法
(例如Oncotype DX(ODX))。最近的研究表明,癌细胞之间广泛的遗传异质性
在肿瘤乃至同一肿瘤内之间,这表明建议治疗
基于许多细胞的“平均”分子信号的患者过于简单。
有趣的是,对于许多癌症,肿瘤等级(如评估的组织形态学外观
病理学家的定性或半量化)已发现与疾病高度相关
结果。但是,病理级倾向于患有明显的观察者间变异性。数字化
组织学样本或整个幻灯片成像,有助于评估疾病的定量方法
进步和预测结果,同时还支持采用心脏病学。最近,研究
组(包括我们自己的组)已经开始表明计算机提取了肿瘤形态的测量值
(例如,从常规的H&E染色癌组织图像捕获核方向,质地,形状,体系结构)
可以预测疾病的侵略性和治疗结果。通过计算询问整个肿瘤
景观及其来自标准H&E幻灯片的最具侵入性元素,这些方法可以允许更多
准确捕获肿瘤异质性,疾病风险,因此是最合适的治疗策略。
这种学术工业合作伙伴关系的目的是开发和验证计算机化的组织学
基于图像的预测因子(芯片),以确定哪个早期雌激素受体阳性(ER+)乳腺癌
患者是仅接受激素治疗的候选者,哪些女性是调整的候选者
化学疗法基于对活检和手术标本衍生的病理载玻片的分析。 Inspirata
Inc.,一家癌症诊断公司,最近获得了许多基于组织形态的许可
Madabhushi集团的技术将带来质量管理系统和生产软件
有助于创建芯片分析的商业前伴侣诊断测试的标准。此外,Inspirata
Inc.将建立完整的监管途径,以成功地翻译美国和国外的测定法。
最后,将使用相同
策略和数据队列作为ODX。我们的方法比ODX等分子测定具有多种优势
它(1)可以审问病理图像的整个扩张,从而更准确地捕获
肿瘤异质性,因此疾病风险,(2)对病理工作流程无破坏,(3)
组织,并且会更便宜(在低收入国家至少至关重要)和(5)更快。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(36)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL D FELDMAN其他文献
MICHAEL D FELDMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL D FELDMAN', 18)}}的其他基金
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
8305155 - 财政年份:2009
- 资助金额:
$ 62.5万 - 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
8512667 - 财政年份:2009
- 资助金额:
$ 62.5万 - 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
7566209 - 财政年份:2009
- 资助金额:
$ 62.5万 - 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
8192918 - 财政年份:2009
- 资助金额:
$ 62.5万 - 项目类别:
相似国自然基金
新辅助化疗后CXCL12+CAF诱导胰腺癌三级淋巴结构表型特征与空间定位的分子机制研究
- 批准号:82373296
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
- 批准号:82360345
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
LncRNA SRA1/SPTBN1复合物调控UGT1A家族增加药物水溶性促进Her-2阳性乳腺癌新辅助化疗耐药
- 批准号:32360144
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
影像组学联合类器官探究膀胱癌分子分型与新辅助化疗疗效的关系及构建疗效预测模型
- 批准号:82302304
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多时序CT影像与病理WSI智能预测局部进展期胃癌新辅助化疗疗效的研究
- 批准号:82371952
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Improving response prediction to neoadjuvant therapy in pancreatic cancer
改善胰腺癌新辅助治疗的反应预测
- 批准号:
10784272 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Artificial Intelligence-based decision support for chemotherapy-response assessment in Brain Tumors
基于人工智能的脑肿瘤化疗反应评估决策支持
- 批准号:
10589512 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
- 批准号:
10697183 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Development of Magnetic Resonance Fingerprinting (MRF) to Assess Response to Neoadjuvant Chemotherapy in Breast Cancer
开发磁共振指纹图谱 (MRF) 来评估乳腺癌新辅助化疗的反应
- 批准号:
10713097 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Enhancing cognitive function in breast cancer survivors through community-based aerobic exercise training
通过社区有氧运动训练增强乳腺癌幸存者的认知功能
- 批准号:
10691808 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别: