Hybrid organometallic_carbon nanotube films for enhanced chemiresistive sensors

用于增强化学电阻传感器的混合有机金属碳纳米管薄膜

基本信息

  • 批准号:
    9207768
  • 负责人:
  • 金额:
    $ 5.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-02-04 至 2018-02-03
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): This proposal describes the development of portable, cost-effective, and energy-efficient chemical sensors for detection of carbon monoxide, formaldehyde, methanol, ethanol, acetone, and hydrogen. Sensing these volatile compounds could both prevent and diagnose health problems. Some diseases are attributed to exposure to low levels of a volatile compound. For instance, formaldehyde, a common indoor pollutant, has been correlated with asthma rates. On the other hand, the human body exhales a set of molecules containing diagnostic information on the health of the individual. For example, trained dogs can detect lung cancer by the smell of a person's breath. Cost-effective and low-powered gas sensors could be deployed in an always-on networked array to prevent exposure to harmful chemicals; portability could extend application of gas sensors to monitoring personal health, which could revolutionize breath vapor analysis in health care. Current sensor technologies are limited. While gas chromatography is the gold standard for accurately identifying trace compounds, the instrumentation is costly and requires specialized training to operate. Other platforms to detect volatiles (fuel cells, infrared spectroscopy, etc.) may be simpler to operate, but face problems with sensitivity, selectivity, cost, and power consumption. To tackle these issues, an "electronic nose" strategy has been explored in which an array of sensors is utilized in concert to determine the chemical fingerprint of a vapor sample. In particular, Swager and coworkers have investigated resistive sensors based on functionalized carbon nanotube networks, potentially leading to inexpensive, low-powered, robust, and portable chemical sensors. Further improvements in sensitivity and selectivity of these sensors could lead to commercially viable devices. The goal of this research is to make a network of single-walled carbon nanotubes connected by organometallic linkages. These linkages are designed to increase electronic communication between adjacent nanotubes and, thus, the overall resting conductivity. Select volatile compounds are expected to disrupt these organometallic centers via oxidation, reduction, or ligand substitution. The overall sensor should be more sensitive and selective than purely organic-functionalized or metal-functionalized nanotube networks. The ultimate goal of this work is to develop sensitive, portable, and always-on sensors to detect environmental VOC exposure at levels well below toxicity thresholds and to monitor breath vapor VOCs of patients to aid in diagnosis of diseases such as lung cancer.
 描述(由适用提供):该提案描述了用于检测一氧化碳,甲醛,甲醇,乙醇,丙酮和氢气的便携式,具有成本效益和节能的化学传感器的发展。感知这些挥发性化合物可以预防和诊断健康问题。有些疾病归因于暴露于挥发性化合物的水平较低。例如,一种常见的室内污染物甲醛与哮喘率有关。另一方面,人体耗尽了一组包含有关个人健康的诊断信息的分子。例如,训练有素的狗可以通过一个人的呼吸闻到肺癌。具有成本效益和低功率的气体传感器可以部署在始终在线的网络阵列中,以防止暴露于有害化学物质中;可移植性可以扩展气体传感器在监测个人健康中的应用,这可能会彻底改变医疗保健中的呼气蒸气分析。当前的传感器技术是有限的。虽然气相色谱法是用于准确识别痕量化合物的黄金标准,但仪器的成本很高,需要专门的培训才能运行。检测挥发性(燃料电池,红外光谱等)的其他平台可能更容易操作,但是面临着敏感性,选择性,成本和功耗的问题。为了解决这些问题,已经探索了一种“电子鼻子”策略,其中使用一系列传感器来确定蒸气样品的化学指纹。尤其是,赃物和同事研究了基于功能化碳纳米管网络的电阻传感器,可能导致廉价,低功率,健壮和便携式化学传感器。这些传感器的灵敏度和选择性的进一步提高可能会导致商业上可行的设备。 这项研究的目的是建立通过有机连接连接的单壁碳纳米管网络。这些链接旨在增加相邻纳米管之间的电子通信,从而增加整体静止电导率。预计选择的挥发性化合物将通过氧化,还原或配体取代来破坏这些有机中心。总体传感器应该比纯粹的有机官能化或金属官能化的纳米管网络更敏感和选择性。这项工作的最终目的是开发敏感,便携式和始终开启的传感器,以检测到低于毒性阈值的水平的环境VOC暴露,并监测患者的呼气蒸气,以帮助诊断肺癌等疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sibo Lin其他文献

Sibo Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sibo Lin', 18)}}的其他基金

Hybrid organometallic_carbon nanotube films for enhanced chemiresistive sensors
用于增强化学电阻传感器的混合有机金属碳纳米管薄膜
  • 批准号:
    9027694
  • 财政年份:
    2015
  • 资助金额:
    $ 5.71万
  • 项目类别:

相似国自然基金

可见光/镍协同催化乙腈氰基精准转移构建烷基腈类精细化学品
  • 批准号:
    22308116
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SdhB^I260V和SdhD^R119C突变介导二斑叶螨乙唑螨腈抗性的分子机制
  • 批准号:
    32372582
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
紫外/亚硫酸盐自氧化体系降解有机氮对氯化生成氯乙腈的影响机制与控制研究
  • 批准号:
    52200012
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
二氧化碳促进乙腈参与的绿色氰甲基化反应研究
  • 批准号:
    22278054
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
紫外/亚硫酸盐自氧化体系降解有机氮对氯化生成氯乙腈的影响机制与控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Establishing industrial production of components that enable expanding accessibility of PET imaging to cancer patient population.
建立组件的工业化生产,使癌症患者群体能够更容易地获得 PET 成像。
  • 批准号:
    10698218
  • 财政年份:
    2023
  • 资助金额:
    $ 5.71万
  • 项目类别:
Natural Glycans for Functional Glycomics
用于功能糖组学的天然聚糖
  • 批准号:
    10081713
  • 财政年份:
    2019
  • 资助金额:
    $ 5.71万
  • 项目类别:
Natural Glycans for Functional Glycomics
用于功能糖组学的天然聚糖
  • 批准号:
    10217203
  • 财政年份:
    2019
  • 资助金额:
    $ 5.71万
  • 项目类别:
Hybrid organometallic_carbon nanotube films for enhanced chemiresistive sensors
用于增强化学电阻传感器的混合有机金属碳纳米管薄膜
  • 批准号:
    9027694
  • 财政年份:
    2015
  • 资助金额:
    $ 5.71万
  • 项目类别:
A NEW METHOD FOR THE ANALYSIS OF VITAMIN D
维生素 D 分析的新方法
  • 批准号:
    8122498
  • 财政年份:
    2011
  • 资助金额:
    $ 5.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了