Extensible open-source zero-footprint web viewer for oncologic imaging research

用于肿瘤成像研究的可扩展开源零足迹 Web 查看器

基本信息

  • 批准号:
    9324177
  • 负责人:
  • 金额:
    $ 65.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by principal investigator): Managing the increasingly complex workflow and imaging analyses for oncology clinical trials to provide timely, protocol-compliant assessments requires sophisticated informatics tools. To address these issues, over the past 10 years the Tumor Imaging Metrics Core (TIMC), a CCSG Shared-Resource of the Dana-Farber/Harvard Cancer Center (DF/HCC), has developed a software informatics system for managing the workflow and image measurements for oncology clinical trials. This system currently is in use across the 5 DF/HCC Harvard hospitals to manage over 600 active clinical trials, with 800 users, and has been licensed and implemented at several other Cancer Centers, including Yale, Utah/Huntsman Cancer Institute, and UW/Seattle Cancer Care Alliance. The workflow management informatics system includes a web-application/database for protocol registration, order entry, work list management, reporting, and billing/administrative functions. However, the integrated, open-source image analysis platform is workstation-based and needs to be installed and updated on each computer where imaging measurements will be performed. Thus, the open- source imaging system is a limiting factor in deployment, requiring added IT desktop support and maintenance at each location where imaging assessments will be performed. The widespread adoption of this system across NCI Cancer Centers will be aided and facilitated by adapting the image analysis functionality into a web-based open-source platform. The current proposal is to 1) create a vendor-neutral, open-source, extensible, zero-footprint web-viewer and supporting server for display and analysis of DICOM images, and 2) create a plug-in architecture to allow us to replace our current open-source image workstation with this zero-footprint web-viewer for our TIMC clinical trials management system. In order to make the system broadly available to the oncology research community, in addition to developing an interface to our TIMC web-application, we will also implement an AIM (Annotation and Image Markup) interface so that caBIG investigators and other AIM framework research projects can integrate easily with our web-viewer. The viewer will meet all of the basic requirements for radiology tumor measurements specific to the needs of oncology clinical trials, yet also be flexible enough to be configured for user preferences and extended via plug-ins to support varied research workflows as a shared research resource. To achieve these design goals, the viewer and all of its functionality will be delivered to client machines exclusively through the web browser with nothing to install on client computers or mobile devices, which greatly simplifies and reduces the cost and support requirements of software deployments, and increases accessibility. The proposed viewer will enable researchers, imaging software developers, clinicians, and patients to access oncology clinical trials images in a freely availabl and openly extensible environment. This will facilitate remote image viewing and collaborative image consultations among a wide-range of imaging professionals. The web-DICOM viewer will be fully integrated with the TIMC clinical trials informatics management system so that both systems can be deployed across NCI Cancer Centers in a completely web-based implementation without desktop IT support. An AIM interface will also be provided so that the web-viewer can be integrated broadly across the caBIG/AIM cancer research community.
 描述(由首席研究者提供):管理日益复杂的工作流程和肿瘤学临床试验的成像分析,以提供及时,符合协议的评估,需要复杂的信息工具。为了解决这些问题,在过去的十年中,肿瘤成像指标核心(TIMC)是Dana-Farber/Harvard Cancer Center(DF/HCC)的CCSG共享资源(DF/HCC),已开发了一种软件信息系统,用于管理用于肿瘤学临床试验的工作流程和图像测量。该系统目前正在哈佛大学5 df/hcc Hospitals中使用,以管理600多个活跃的临床试验,并拥有800名用户,并已在其他几个癌症中心(包括耶鲁大学,犹他州/亨斯曼癌症研究所)和UW/Seattle Cancer Cancer Care Care Alliance获得许可和实施。工作流管理信息系统包括用于协议注册,订单输入,工作列表管理,报告和计费/管理功能的Web应用程序/数据库。但是,集成的开源图像分析平台是基于工作站的,需要在每台计算机上安装和更新成像测量。这就是开源成像系统是部署的一个限制因素,需要在将进行成像评估的每个位置添加桌面支持和维护。通过将图像分析功能调整为基于Web的开源平台,将在NCI癌症中心跨NCI癌症中心的宽度采用。当前的建议是1)创建一个供应商中立,开源,可扩展的,零英尺的网络视角和支持服务器,以显示和分析DICOM图像,2)创建一个插件体系结构,以允许我们使用此零脚的Web-Web-viewer for我们的当前开放式映像工作站,以替换我们的TIMC临床临床临床临床系统。为了使该系统可广泛地向肿瘤研究社区提供,除了开发了我们的TIMC网络应用程序的界面外,我们还将实施一个目标(注释和图像标记)界面,以便Cabig研究人员和其他目标框架研究项目可以轻松地与Web-Ciewer集成。观看者将满足肿瘤学临床试验需求的放射学肿瘤测量值的所有基本要求,但也足够灵活,可以配置为用户偏好,并通过插件扩展,以支持各种研究工作流程作为共享的研究资源。为了实现这些设计目标,观看器及其所有功能将通过网络浏览器专门传递到客户端机器,而无需安装在客户端计算机或移动设备上,这些设备大大简化并降低了软件部署的成本和支持要求,并提高可访问性。拟议的观众将使研究人员,成像软件开发人员,临床医生和患者能够在自由且公开可扩展的环境中访问肿瘤学临床试验图像。这将支持远程图像查看和协作图像咨询,并在大量的成像专业人士中进行。 Web-DICOM查看器将与TIMC临床试验信息管理系统完全集成,以便在没有桌面IT支持的情况下完全基于网络的实施中,可以在NCI癌症中心部署两个系统。还将提供AIM界面,以便可以在Cabig/Aim Cancer Research社区中广泛集成Web观看器。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

GORDON J HARRIS的其他基金

Extensible Open Source Zero-Footprint Web Viewer for Cancer Imaging Research
用于癌症成像研究的可扩展开源零足迹 Web 查看器
  • 批准号:
    10644112
    10644112
  • 财政年份:
    2023
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
Lymph Node Quantification System for Multisite Clinical Trials
用于多站点临床试验的淋巴结定量系统
  • 批准号:
    10687096
    10687096
  • 财政年份:
    2019
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
Neuroimaging Core
神经影像核心
  • 批准号:
    7141470
    7141470
  • 财政年份:
    2006
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
Tumor Imaging Metrics Core
肿瘤成像指标核心
  • 批准号:
    10332584
    10332584
  • 财政年份:
    1997
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
Tumor Imaging Metrics Core
肿瘤成像指标核心
  • 批准号:
    10540443
    10540443
  • 财政年份:
    1997
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
Core 03: Tumor Imaging Metrics
核心 03:肿瘤成像指标
  • 批准号:
    10062885
    10062885
  • 财政年份:
    1997
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
NEUROIMAGING IN PERSONS AT RISK FOR HUNTINGTON'S DISEASE
亨廷顿氏病高危人群的神经影像学检查
  • 批准号:
    2333004
    2333004
  • 财政年份:
    1994
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
NEUROIMAGING IN PERSONS AT RISK FOR HUNTINGTON'S DISEASE
亨廷顿氏病高危人群的神经影像学检查
  • 批准号:
    2272196
    2272196
  • 财政年份:
    1994
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
NEUROIMAGING IN PERSONS AT RISK FOR HUNTINGTON'S DISEASE
亨廷顿氏病高危人群的神经影像学检查
  • 批准号:
    2272197
    2272197
  • 财政年份:
    1994
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
NEUROIMAGING IN PERSONS AT RISK FOR HUNTINGTON'S DISEASE
亨廷顿氏病高危人群的神经影像学检查
  • 批准号:
    2272198
    2272198
  • 财政年份:
    1994
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:

相似国自然基金

采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
  • 批准号:
    72303205
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
  • 批准号:
    12305261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
  • 批准号:
    62301339
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
  • 批准号:
    72304103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
  • 批准号:
    10745593
    10745593
  • 财政年份:
    2023
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
  • 批准号:
    10819933
    10819933
  • 财政年份:
    2023
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
Early Detection of Pancreatic Cancer with Human-in-the-Loop Deep Learning
通过人在环深度学习早期检测胰腺癌
  • 批准号:
    10592060
    10592060
  • 财政年份:
    2023
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
Improving cross ancestry polygenic prediction of tobacco and alcohol use
改进烟草和酒精使用的跨血统多基因预测
  • 批准号:
    10739557
    10739557
  • 财政年份:
    2023
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
  • 批准号:
    10566299
    10566299
  • 财政年份:
    2023
  • 资助金额:
    $ 65.52万
    $ 65.52万
  • 项目类别: