Lymph Node Quantification System for Multisite Clinical Trials
用于多站点临床试验的淋巴结定量系统
基本信息
- 批准号:10687096
- 负责人:
- 金额:$ 59.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressArtificial IntelligenceBackBasic ScienceCancer CenterCancer PatientClinicalClinical ManagementClinical OncologyClinical ResearchClinical TrialsClinical Trials DatabaseClinical assessmentsDataData SetDatabasesDiagnosticDiseaseDisease ProgressionDisease modelEvaluationFeedbackFunctional ImagingGene Expression ProfilingGoalsHodgkin DiseaseHumanImageImage AnalysisImaging DeviceInformaticsInvestmentsLaboratoriesLesionLymphomaMachine LearningMalignant NeoplasmsManualsMapsMeasurementMeasuresMetabolicMetabolismMorphologyMulti-Institutional Clinical TrialNCI-Designated Cancer CenterNodalPathologyPathway interactionsPatientsPerformancePhenotypePositron-Emission TomographyQuantitative EvaluationsRelapseReliability of ResultsReportingResearch PersonnelRiskScanningScientific Advances and AccomplishmentsServicesSolid NeoplasmSourceStagingStandardizationStructureSurrogate EndpointSystemTechnologyTimeTrainingTranslatingTreatment ProtocolsTumor BurdenWorkX-Ray Computed Tomographyanatomic imagingautomated segmentationburden of illnesscancer clinical trialcancer imagingcancer therapyclinical practicecloud basedcohortcommercializationdesignexperienceglucose metabolismimaging Segmentationimprovedindustry partnerinnovationlymph nodesmultidisciplinarynew technologynovelnovel therapeuticsparticipant enrollmentprecision medicineprognostic indicatorquantitative imagingradiologistsuccesstask analysistooltreatment effecttreatment responsetreatment strategytumorusability
项目摘要
Project Summary / Abstract
In patients with lymphomas and other cancers, quantitative evaluation of the extent of tumor burden is im-
portant for staging, restaging, and assessment of therapeutic response or relapse; yet measurement of overall
tumor burden is challenging with current tools, particularly when lymph nodes are confluent or difficult to fully
differentiate from surrounding structures. Precision medicine and novel therapeutics are emphasizing the need
to introduce a risk-adapted approach to tailor appropriate treatment strategies for cancer patients. The ability to
quantitatively assess cancer phenotypes with functional and anatomical imaging that could efficiently and ac-
curately map patients to gene expression profiling, clinical information, matching cohorts, and novel treatment
regimens could potentially result in more optimal management of patients with cancer.
This Academic-Industry Partnership aims to translate recently developed technologies for semi-
automated image segmentation and quantification of lymph nodes into robust tools and integrate them into an
existing cloud-based system for management of multicenter oncology clinical trials. The ability to semi-
automatically segment lymph node pathology with computed tomography (CT), as well as quantify nodal me-
tabolism with positron emission tomography (PET) will enable comprehensive tracking of morphological and
functional changes related to disease progression and treatment response.
Since 2004, the Dana-Farber/Harvard Cancer Center's (DF/HCC) Tumor Imaging Metrics Core (TIMC)
has developed the Precision Imaging Metrics, LLC (PIM) platform to manage clinical trial image assessment
workflows. Currently, there are nearly 50,000 consistently measured lymph node measurements in the TIMC
database. The PIM system is used to make over 20,000 time point imaging assessments per year at eight NCI-
designated Cancer Centers and aims to grow quickly by transitioning to a fully cloud-hosted system.
Given sufficient training data, state-of-the-art machine learning and artificial intelligence (AI) technolo-
gies can meet or even exceed human performance on specific imaging analysis tasks. Recent studies have
indicated that AI-based lymph node segmentation from CT scans is nearing human performance levels, and
we will extend and translate this work into a commercial tool. Specifically, our aim is to translate recent ad-
vancements in AI-based segmentation into deployable services, and integrate these services into the clinical
trial workflow. The proposed system will be designed to incorporate expert feedback provided by image ana-
lysts and radiologists back into the ground truth dataset, allowing for continuous improvement in accuracy and
clinical acceptance. We will extend our semi-automatic CT segmentation technologies to quantify lymph node
metabolism in PET/CT, using lymphoma as the model disease. Integration of these technologies with PIM will
provide an ongoing source of consistently measured quantitative data across a network of cancer centers.
项目摘要 /摘要
在淋巴瘤和其他癌症患者中,对肿瘤负担程度的定量评估是不可能的
用于对治疗反应或复发的分期,重新陈述和评估;但是总体测量
肿瘤负担在当前工具方面具有挑战性,尤其是当淋巴结汇合或难以完全
与周围结构区分开。精密医学和新型治疗学强调了需求
引入一种适应风险的方法来为癌症患者量身定制适当的治疗策略。能力
定量评估具有功能和解剖成像的癌症表型
巧妙地将患者绘制为基因表达分析,临床信息,匹配队列和新型治疗
方案可能会导致对癌症患者的最佳治疗。
这种学术行业伙伴关系旨在翻译最近开发的半半技术技术
自动化图像分割和将淋巴结定量到鲁棒工具中,并将其集成到一个
现有的基于云的系统用于管理多中心肿瘤学临床试验。半半的能力
使用计算机断层扫描(CT)自动分段淋巴结病理学,并量化节点me-
带有正电子发射断层扫描(PET)的Tabolism将能够全面跟踪形态学和
功能变化与疾病进展和治疗反应有关。
自2004年以来,Dana-Farber/Harvard癌症中心(DF/HCC)肿瘤成像指标核心(TIMC)
已经开发了Precision Imaging Metrics,LLC(PIM)平台来管理临床试验图像评估
工作流程。目前,TIMC中有近50,000个持续测量的淋巴结测量值
数据库。 PIM系统每年在八个NCI上每年进行超过20,000个时间成像评估
指定的癌症中心,旨在通过过渡到完全云托管系统来迅速增长。
鉴于足够的培训数据,最先进的机器学习和人工智能(AI)技术
GIE在特定的成像分析任务上可以达到甚至超过人类的绩效。最近的研究
表明来自CT扫描的基于AI的淋巴结分割正在接近人类绩效水平,并且
我们将把这项工作扩展并将其转化为商业工具。具体而言,我们的目的是翻译最近的广告
基于AI的分段中的Vantions将这些服务集成到临床上,并将这些服务集成
试用工作流程。拟议的系统将旨在结合图像和图像提供的专家反馈
LYST和放射科医生重新回到地面真相数据集中,可以持续提高准确性和
临床接受。我们将扩展半自动CT分割技术以量化淋巴结
PET/CT中的代谢,使用淋巴瘤作为模型疾病。这些技术与PIM的集成将
在癌症中心网络中提供持续测量的定量数据的持续来源。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GORDON J HARRIS其他文献
GORDON J HARRIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GORDON J HARRIS', 18)}}的其他基金
Extensible Open Source Zero-Footprint Web Viewer for Cancer Imaging Research
用于癌症成像研究的可扩展开源零足迹 Web 查看器
- 批准号:
10644112 - 财政年份:2023
- 资助金额:
$ 59.58万 - 项目类别:
Extensible open-source zero-footprint web viewer for oncologic imaging research
用于肿瘤成像研究的可扩展开源零足迹 Web 查看器
- 批准号:
9324177 - 财政年份:2015
- 资助金额:
$ 59.58万 - 项目类别:
NEUROIMAGING IN PERSONS AT RISK FOR HUNTINGTON'S DISEASE
亨廷顿氏病高危人群的神经影像学检查
- 批准号:
2333004 - 财政年份:1994
- 资助金额:
$ 59.58万 - 项目类别:
NEUROIMAGING IN PERSONS AT RISK FOR HUNTINGTON'S DISEASE
亨廷顿氏病高危人群的神经影像学检查
- 批准号:
2272196 - 财政年份:1994
- 资助金额:
$ 59.58万 - 项目类别:
NEUROIMAGING IN PERSONS AT RISK FOR HUNTINGTON'S DISEASE
亨廷顿氏病高危人群的神经影像学检查
- 批准号:
2272197 - 财政年份:1994
- 资助金额:
$ 59.58万 - 项目类别:
NEUROIMAGING IN PERSONS AT RISK FOR HUNTINGTON'S DISEASE
亨廷顿氏病高危人群的神经影像学检查
- 批准号:
2272198 - 财政年份:1994
- 资助金额:
$ 59.58万 - 项目类别:
相似国自然基金
人工智能驱动的营销模式和消费者行为研究
- 批准号:72332006
- 批准年份:2023
- 资助金额:165 万元
- 项目类别:重点项目
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
巴氏杀菌乳中金黄色葡萄球菌和肠毒素A风险预测和溯源的人工智能模型构建研究
- 批准号:32302241
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
制造企业人工智能工作场景下员工AI认同影响机制与员工主动行为内在机理研究
- 批准号:72362025
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
基于原子贡献与人工智能的萃取精馏溶剂分子设计研究
- 批准号:22308037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ORS Spine Section Symposia: Enhancing Spine Research throughMentoring, Diversity and Collaboration
ORS 脊柱部分研讨会:通过指导、多样性和协作加强脊柱研究
- 批准号:
10606748 - 财政年份:2023
- 资助金额:
$ 59.58万 - 项目类别:
Breast core-needle diagnostics in LMICs via millifluidics and direct-to-digital imaging: development and validation in Ghana
通过微流体和直接数字成像对中低收入国家进行乳腺空心针诊断:在加纳进行开发和验证
- 批准号:
10416550 - 财政年份:2023
- 资助金额:
$ 59.58万 - 项目类别:
Exploring, Predicting, and Intervening on Long-term Viral suppression Electronically (EPI-LoVE)
电子方式探索、预测和干预长期病毒抑制 (EPI-LoVE)
- 批准号:
10676683 - 财政年份:2023
- 资助金额:
$ 59.58万 - 项目类别:
IMPACT: Integrative Mindfulness-Based Predictive Approach for Chronic low back pain Treatment
影响:基于正念的综合预测方法治疗慢性腰痛
- 批准号:
10794463 - 财政年份:2023
- 资助金额:
$ 59.58万 - 项目类别:
CRCNS: There and Back Again Linking Global Maps to First-Person Perspectives
CRCNS:将全球地图与第一人称视角联系起来
- 批准号:
10831113 - 财政年份:2023
- 资助金额:
$ 59.58万 - 项目类别: