The Role of NMD in Pre-Implantation Development
NMD 在植入前发育中的作用
基本信息
- 批准号:9349346
- 负责人:
- 金额:$ 3.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectBiologyCell Differentiation processCell LineageCellsComplementComplexCoupledDataDefectDegradation PathwayDevelopmentDown-RegulationES Cell LineEmbryoEmbryonic DevelopmentEmployee StrikesEndodermEquilibriumEukaryotaEventFibrinogenGap JunctionsGene ExpressionGene Expression RegulationGenetic TranscriptionGerm LayersGoalsHeterogeneityHumanHuman Cell LineHuman DevelopmentIn VitroInfertilityInner Cell MassKnockout MiceKnowledgeLaboratoriesLeadMeasuresMediatingMesodermMicroRNAsModelingMolecularMorphologyMusOrganOrganismPathway interactionsPhenotypePhylogenetic AnalysisPlayPost-Transcriptional RegulationPre-implantation Embryo DevelopmentProteinsPublicationsPublishingRNA DecayRNA DegradationRNA chemical synthesisRepressionRoleSignal TransductionTimeTissuesTranscriptTranscriptional RegulationUndifferentiatedUp-RegulationWorkbaseblastocystblastomere structurecell typeembryonic stem cellexperimental studyfascinategain of functiongenome-widehuman embryonic stem cellin vivoknock-downmRNA Decaymouse modelnerve stem cellneural initiationpreimplantationrelating to nervous systemstem cell technologytranscriptome sequencingzygote
项目摘要
ABSTRACT
Pathways regulating cell fate decisions during the earliest stages of embryo development are complex and
remain poorly understood. Most developmental studies concentrate on transcriptional regulation, and thus fail to
take into account the fact the steady-state levels of RNAs are dictated as much by their rate of decay as by their
rate of synthesis. This proposal focuses on Nonsense-Mediated RNA Decay (NMD), a highly conserved RNA
degradation pathway that selectively degrades specific subsets of transcripts. Loss or knockdown of NMD factors
leads to developmental defects in species spanning the phylogenetic scale, including humans. One of the most
striking findings is that loss of all but one of the examined NMD factors leads to early embryonic lethality in mice,
as well as other higher eukaryotes. To date, there have been no studies examining the underlying mechanism.
This application addresses this question using mouse models and normal human cell lines, coupled with
genome-wide molecular approaches at the single-cell level.
The overarching hypothesis is that NMD degrades specific transcripts to control developmental decisions in the
early embryo. Support for this hypothesis comes from previously published studies on neural differentiation from
the Wilkinson laboratory, in which they identified NMD-based circuits that maintain the neural stem cell state.
Neural differentiation signals trigger the expression of microRNAs that repress NMD, leading to stabilization of
pro-neural transcripts and the consequent initiation of neural differentiation. This work led to the hypothesis that
NMD also promotes the undifferentiated state in other cell lineages. In support, the Wilkinson laboratory
demonstrated that NMD magnitude tends to be high in undifferentiated cells and is downregulated upon
differentiation. Furthermore, they showed that NMD magnitude plays a specific role in regulating cell fate
decisions of primary germ layers in human embryonic stem cells (hESCs), such that NMD downregulation drives
endoderm differentiation, while NMD upregulation augments mesoderm differentiation. In addition, the Wilkinson
laboratory recently discovered a factor that likely plays a critical role in controlling NMD magnitude in hESCs and
the early embryo. This factor, UPF3A, was previously regarded as a weak NMD factor from artificial tethering
experiments, but we recently showed that it acts primarily as a potent NMD repressor through extensive loss-
and gain-of-function experiments, both in vitro and in vivo. This suggests the hypothesis that UPF3A serves as
a molecular rheostat, thereby controlling differentiation events critical in early embryonic development. In support
of this hypothesis, the Wilkinson laboratory showed that loss of UPF3A causes early embryonic lethality,
accompanied by morphological defects at the pre-implantation stage. The goals of my proposal are to (i) dissect
the specific roles of NMD in early pre-implantation embryo development, (ii) elucidate the role of a NMD
repressor identified by the Wilkinson laboratory—UPF3A—in embryogenesis, and (iii) define molecular circuits
by which NMD acts in early development using hESCs to model human development.
抽象的
在胚胎发育的高位阶段调节细胞命运决策的途径很复杂,并且
大多数关于转录调节的发展研究,因此也失败了
考虑到tate rNA的事实是由其衰减率所决定的
合成速率。
降解途径,可选择转录本的特定子集。
导致跨越系统发育量表的物种的发育缺陷,最倾向的人之一。
引人注目的发现是,除了检查的NMD因子之一以外的所有损失都导致小鼠的早期胚胎懒惰嗜血杆菌,即
以及迄今为止其他较高的真核生物。
此应用程序使用鼠标模型和正常的人类细胞细胞系解决了一个问题,并与
单细胞水平的全基因组分子方法。
总体假设是,NMD降低了特定的转录本以控制发展中的发展决策
对假设的早期支持来自于公开公开的神经区分
威尔金森(Wilkinson)实验室,他们在其中确定了维持神经干细胞状态的基于NMD的电路。
神经区分信号触发了抑制NMD的microRNA的表达,导致稳定
亲神经的成绩单和神经分化的奉献。
NMD还促进了其他细胞谱系中未分解的状态。
证明NMD磁化体在未分化的细胞中往往很高,并且在
区分。
人类胚胎干细胞(hESC)中原发性胚层的决策,使得NMD下调驱动
内胚层的区分,而NMD上调增加了中胚层的区分。
实验室最近发现了一个因素,该因素可能在控制hESC和hESC和
早期的胚胎。
实验,但我们逐渐证明它主要通过广泛的损失 -
在体外和体内的功能实验都表明,UPF3A的假设是
一个分子风湿病,在早期胚胎发育中控制了差异化事件。
在这一假设中,威尔金森实验室表明,UPF3A的损失会导致拥抱性致死性,
伴随着植入阶段的形态缺陷。
NMD在早期植入前胚胎发育中的特定作用,(ii)阐明了NMD的作用
由威尔金森实验室(UPF3A-胚胎发生)确定的阻遏物,(iii)定义分子电路
NMD使用hESC在早期开发中发挥作用来对人类发展进行建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Chousal其他文献
Jennifer Chousal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Chousal', 18)}}的其他基金
The Role of NMD in Pre-Implantation Development
NMD 在植入前发育中的作用
- 批准号:
9192257 - 财政年份:2016
- 资助金额:
$ 3.67万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 3.67万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 3.67万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 3.67万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 3.67万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 3.67万 - 项目类别: