Plasmid-mediated Quinolone resistance
质粒介导的喹诺酮类耐药
基本信息
- 批准号:8475422
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-01-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlanineAlgaeAllelesAmino AcidsAntibiotic ResistanceBacteriaBacterial ChromosomesBindingBiological ModelsCalorimetryCategoriesCellsChromosomesCiprofloxacinComplexCrystallographyDNADNA BindingDNA DamageDNA GyraseDNA Topoisomerase IVDissectionElementsEnzyme InhibitionEnzymesFamilyGenesGram-Negative BacteriaGrowthHomologous GeneHumanHybridsIn VitroIntegronsLinkMeasuresMediatingMedicalMobile Genetic ElementsMulti-Drug ResistanceMultidrug Resistance GeneMutagenesisMutationNaturePatternPharmaceutical PreparationsPlasmidsPropertyProtein FamilyProteinsPublic HealthQuinolonesResistanceRoleSOS ResponseScanningShewanellaShockSon of Sevenless ProteinsStenotrophomonas maltophiliaStressStructureStructure-Activity RelationshipSurface Plasmon ResonanceSystemTargeted ToxinsTestingTitrationsTopoisomeraseToxic effectUltraviolet RaysVibrioWorkaminoglycoside 6&apos-N-acetyltransferaseantimicrobialantimicrobial drugbacterial resistanceclinically significantdeletion analysisefflux pumpmembermicrocinmutantoverexpressionpathogenphysical propertyprotein protein interactionquinolone resistanceresistance mechanismresistance mutationyeast two hybrid system
项目摘要
Project Summary
Quinolones have been very useful antimicrobial agents because they are highly potent, active against a wide
range of bacteria, and relatively non-toxic. Their broad use, however, has been followed by rising rates of
resistance. Quinolone resistance has traditionally been understood to arise either by mutations that alter DNA
gyrase and topoisomerase IV, enzymes that are the targets for quinolone action, or by mutations that increase
expression of efflux pumps that actively eliminate the agents from the cell. Neither type of resistance has been
transmissible since both are due to mutations on the bacterial chromosome. Hence, it came as a surprise
when plasmid-mediated quinolone resistance was discovered. Three distinct mechanisms for such resistance
are known: target protection by pentapeptide repeat proteins of the QnrA, QnrB, and QnrS families that may
act in part as DNA mimics, quinolone inactivation by mutant aminoglycoside 6' N-acetyltransferase [Aac(6')-Ib-
cr], and provision of new systems for quinolone efflux. Each mechanism confers low-level resistance but
facilitates selection of higher level, clinically significant resistance. Although plasmid-mediated quinolone
resistance was discovered only 11 years ago, subsequent studies have shown the genes to be broadly
distributed in gram-negative bacteria from around the world and to be typically incorporated into integrons on
multiresistance plasmids. This resubmission application builds on our prior studies to obtain a deeper and
more detailed understanding of the resistance due to Qnr proteins. Under Specific Aim 1, we propose to
identify essential regions and amino acid residues in QnrB1 via alanine-scanning mutagenesis and deletion
analysis. Cloned mutant genes will be screened for ability to confer quinolone resistance and to inhibit
bacterial growth. Candidate mutant proteins will be overexpressed, purified, and tested for protection and
inhibition of purified gyrase and ability to block DNA binding to gyrase. Under Specific Aim 2, we propose to
evaluate the native functions of qnrA, qnrB, and qnrS. We have found a LexA recognition sequence upstream
from plasmid-mediated qnrB alleles and have shown that qnrB expression is under SOS control. In
Shewanella algae, a reservoir of qnrA, we have further found cold shock to trigger qnrA expression, and we
propose to test further conditions of expression in S. algae, Vibrio splendidus, a reservoir of qnrS-like genes,
Stenotrophomonas maltophilia, a reservoir of qnrB-like genes, and we will determine the effect of quinolones
and other DNA damaging agents, such as ultraviolet light (as well as other conditions of environmental stress)
on qnr expression. We will also directly test the hypothesis that Qnr proteins protect against the natural
gyrase-targeting toxin microcin B17. In addition we will screen for proteins other than gyrase that interact with
Qnr by use of bacterial and yeast two-hybrid systems. Under Specific Aim 3, we propose to explore
Qnr/gyrase interaction as revealed by isothermal titration calorimetry or surface plasmon resonance and by x-
ray crystallography.
项目概要
喹诺酮类药物是非常有用的抗菌剂,因为它们非常有效,对广泛的细菌有活性。
细菌范围广,且相对无毒。然而,随着它们的广泛使用,其使用率也随之上升。
反抗。传统上认为喹诺酮耐药性是由改变 DNA 的突变引起的
旋转酶和拓扑异构酶 IV,这些酶是喹诺酮作用的靶标,或者通过突变增加
外排泵的表达,主动消除细胞中的药剂。这两种类型的抵抗都没有被
都具有传染性,因为两者都是由于细菌染色体上的突变造成的。于是乎,就让人感到意外了
当发现质粒介导的喹诺酮耐药性时。这种抵抗的三种不同机制
已知:QnrA、QnrB 和 QnrS 家族五肽重复蛋白的靶标保护可能
部分作为 DNA 模拟物,突变型氨基糖苷 6' N-乙酰转移酶 [Aac(6')-Ib- 使喹诺酮失活
cr],并提供新的喹诺酮流出系统。每种机制都会产生低水平的阻力,但
有助于选择更高水平的、具有临床意义的耐药性。尽管质粒介导的喹诺酮
耐药性仅在 11 年前被发现,随后的研究表明该基因广泛存在
分布于世界各地的革兰氏阴性细菌中,通常被整合到整合子中
多重抗性质粒。此重新提交申请以我们之前的研究为基础,以获得更深入和更深入的研究
更详细地了解 Qnr 蛋白引起的耐药性。在具体目标 1 下,我们建议
通过丙氨酸扫描诱变和缺失鉴定 QnrB1 中的必需区域和氨基酸残基
分析。将筛选克隆的突变基因以赋予喹诺酮抗性并抑制
细菌生长。候选突变蛋白将被过表达、纯化并测试其保护作用和
抑制纯化的促旋酶和阻断 DNA 与促旋酶结合的能力。在具体目标 2 下,我们建议
评估 qnrA、qnrB 和 qnrS 的本机函数。我们在上游发现了LexA识别序列
来自质粒介导的 qnrB 等位基因,并表明 qnrB 表达受到 SOS 控制。在
希瓦氏藻是qnrA的储存库,我们进一步发现冷休克可以触发qnrA表达,并且我们
建议进一步测试 S. algae、Vibrio splendidus(qnrS 样基因库)中的表达条件,
嗜麦芽寡养单胞菌,qnrB 样基因的储存库,我们将确定喹诺酮类药物的作用
和其他 DNA 损伤剂,例如紫外线(以及其他环境压力条件)
关于 qnr 表达式。我们还将直接检验 Qnr 蛋白可以防止自然环境侵害的假设。
旋转酶靶向毒素小菌素 B17。此外,我们将筛选除旋转酶以外的与以下物质相互作用的蛋白质:
Qnr 使用细菌和酵母两种杂交系统。在具体目标 3 下,我们建议探索
通过等温滴定量热法或表面等离子体共振以及 x-揭示的 Qnr/旋转酶相互作用
射线晶体学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David C Hooper其他文献
David C Hooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David C Hooper', 18)}}的其他基金
Subproject 4 Antimicrobials and Efflux Pumps in Staphylococcus aureus Infection
子项目 4 金黄色葡萄球菌感染中的抗菌药物和外排泵
- 批准号:
9151289 - 财政年份:2016
- 资助金额:
$ 38.5万 - 项目类别:
Antimicrobials and Efflux Pumps in Staphylococcus aureus Infection
金黄色葡萄球菌感染中的抗菌药物和外排泵
- 批准号:
8376876 - 财政年份:2012
- 资助金额:
$ 38.5万 - 项目类别:
Antimicrobials and Efflux Pumps in Staphylococcus aureus Infection
金黄色葡萄球菌感染中的抗菌药物和外排泵
- 批准号:
8202963 - 财政年份:2011
- 资助金额:
$ 38.5万 - 项目类别:
Subproject 4: Role of Pumps in Resistance, Physiology, and Infection
子项目 4:泵在抵抗、生理和感染中的作用
- 批准号:
10327905 - 财政年份:2009
- 资助金额:
$ 38.5万 - 项目类别:
Subproject 4: Role of Pumps in Resistance, Physiology, and Infection
子项目 4:泵在抵抗、生理和感染中的作用
- 批准号:
10571916 - 财政年份:2009
- 资助金额:
$ 38.5万 - 项目类别:
相似国自然基金
基于iPSC来源的类器官模型研究PHOX2B丙氨酸重复序列突变在肠脑神经系统中的致病效应及分子机制
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
自由短肽微阵列用于高通量筛选二苯丙氨酸基抗菌肽
- 批准号:52303206
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
γ-干扰素介导SRSF3色氨酸-苯丙氨酸替代翻译在胃癌免疫微环境中的作用和机制研究
- 批准号:82303803
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道微生态介导的苯丙氨酸代谢在三七皂苷抑制缺血性脑卒中继发性血栓形成中的作用机制研究
- 批准号:82304488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新型聚合物点荧光探针的苯丙氨酸即时检测系统研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Evaluation of athero-protective role of blue-green algae
蓝绿藻的动脉粥样硬化保护作用评价
- 批准号:
7939944 - 财政年份:2009
- 资助金额:
$ 38.5万 - 项目类别:
Evaluation of athero-protective role of blue-green algae
蓝绿藻的动脉粥样硬化保护作用评价
- 批准号:
7790200 - 财政年份:2009
- 资助金额:
$ 38.5万 - 项目类别: