Single neuron mechanisms of sensory-motor learning

感觉运动学习的单神经元机制

基本信息

项目摘要

DESCRIPTION (provided by applicant): Humans maintain learned motor skills over long time-scales-for days, years or even decades. However, little is known about how the brain achieves this stability. Some studies indicate that while motor skills can remain stable for years, the individual neurons controlling them may significantly change their firing properties over the course of hours. In another view, the tuning of individual neurons is as stable as the motor skill itself. The central hypothesis of this project is that the brain encodes learned behaviors on two distinct levels - a mesoscopic level that is highly stable, and a microscopic level in which single neurons change and are influenced by the recent history of motor performance errors. In other words, the stability of a memory is rooted not in single neuron stability, but in network patterns that persist in spite of drifting activity in individual neurons. This project investigates this hypothesis by examining the neural basis of song in zebra finches. The neural circuits that underly song behavior are well defined, extensively studied, and in key respects homologous to the cortico-basal ganglia circuits that underly sensory-motor learning in mammals. For this project, the key value of the songbird is the stability of its behavior. A songbird can sing the same learned song with great precision for years providing a unique opportunity to examine how motor skills are preserved over long time-scales. Using new tools for stable recording from neurons, the project examines single neuron tuning and network patterns underlying song over time scales of days to months. To accelerate changes in the song motor program the project uses a brain-machine interface that generates brief bursts of noise during singing whenever the brain activates specific groups of neurons. Preliminary data reveals that birds can learn to reduce this interfering noise, and improve the quality of their songs by controlling the pattern of activity in the targeted neurons. Through the brain-machine interface and other experiments, significant preliminary data reveals that whereas mesoscopic dynamical patterns in premotor cortex are stable, individual neurons can drift in and out of the ensemble pattern, and adjust their activity to minimize performance errors. This project will reveal the rules of this process with cellular resolution. Insights gained from these experiments have the potential to impact human health. If single neurons drift in motor control, then knowing the rules that govern this drift will be critical to therapeutic interventions that promote recovery after injury, or create sable brain- machine interfaces for human prosthetics.
描述(由申请人提供):人类在长时间,数年甚至数十年的时间内保持学习的运动技能。但是,关于大脑如何实现这种稳定性知之甚少。一些研究表明,尽管运动技能可以保持稳定数年,但控制它们的单个神经元可能会在数小时内显着改变其射击特性。从另一种角度来看,单个神经元的调整与运动技能本身一样稳定。该项目的核心假设是大脑在两个不同的层面上编码学习的行为 - 高度稳定的介质水平,以及一个微观水平,其中单个级别 神经元会发生变化,并受到运动性能错误的近期历史的影响。换句话说,记忆的稳定性不是根源于单个神经元稳定性,而是基于网络模式,这些模式仍然存在于单个神经元中的活动中的漂移。该项目通过检查斑马雀科中歌曲的神经基础来研究这一假设。基本的歌曲行为的神经回路经过了充分的定义,广泛的研究,并且在关键方面与哺乳动物中基础的感觉运动学习的皮质 - 巴萨神经节电路同源。对于这个项目,鸣禽的关键价值是其行为的稳定性。多年来,鸣禽可以精确地唱着同一首学习的歌曲,为长时间尺度提供了一个独特的机会来研究运动技能。该项目使用神经元稳定录制的新工具检查了单个神经元调整和网络模式,这些歌曲的基础是天数到几个月的时间尺度。为了加速歌曲运动程序的变化,该项目使用脑机界面,每当大脑激活特定的神经元组时,在唱歌过程中会产生短暂的噪音。初步数据表明,鸟类可以学会减少这种干扰的噪音,并通过控制模式来提高歌曲的质量 靶向神经元的活性。通过脑机界面和其他实验,明显的初步数据表明,尽管介观介质的动力学模式是稳定的,但单个神经元可以从进出的集合模式中漂移,并调整其活性以最大程度地减少性能误差。该项目将通过蜂窝分辨率揭示此过程的规则。从这些实验中获得的见解有可能影响人类健康。如果单个神经元在运动控制中漂移,那么知道控制这种漂移的规则对于促进受伤后康复的治疗干预措施至关重要,或为人类假体创建可黑脑脑机界面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy James Gardner其他文献

Timothy James Gardner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy James Gardner', 18)}}的其他基金

Corticostriatal contributions to motor exploration and reinforcement
皮质纹状体对运动探索和强化的贡献
  • 批准号:
    10700765
  • 财政年份:
    2020
  • 资助金额:
    $ 35.81万
  • 项目类别:
Corticostriatal contributions to motor exploration and reinforcement
皮质纹状体对运动探索和强化的贡献
  • 批准号:
    10053204
  • 财政年份:
    2020
  • 资助金额:
    $ 35.81万
  • 项目类别:
High-density microfiber interfaces for deep brain optical recording and stimulation
用于深部脑光学记录和刺激的高密度微纤维接口
  • 批准号:
    9244484
  • 财政年份:
    2016
  • 资助金额:
    $ 35.81万
  • 项目类别:
A platform for innovation in miniature microscopy
微型显微镜创新平台
  • 批准号:
    9193420
  • 财政年份:
    2016
  • 资助金额:
    $ 35.81万
  • 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
  • 批准号:
    8927703
  • 财政年份:
    2014
  • 资助金额:
    $ 35.81万
  • 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
  • 批准号:
    9509566
  • 财政年份:
    2014
  • 资助金额:
    $ 35.81万
  • 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
  • 批准号:
    8801295
  • 财政年份:
    2014
  • 资助金额:
    $ 35.81万
  • 项目类别:
High-Density Recording and Stimulating Microelectrodes
高密度记录和刺激微电极
  • 批准号:
    8935966
  • 财政年份:
    2014
  • 资助金额:
    $ 35.81万
  • 项目类别:
Tunneling microfiber electrode arrays for stable neural recording
用于稳定神经记录的隧道微纤维电极阵列
  • 批准号:
    8807848
  • 财政年份:
    2014
  • 资助金额:
    $ 35.81万
  • 项目类别:
High-Density Recording and Stimulating Microelectrodes
高密度记录和刺激微电极
  • 批准号:
    8826494
  • 财政年份:
    2014
  • 资助金额:
    $ 35.81万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Utility and feasibility of activity type to augment consumer wearable-based physical activity energy expenditure prediction equations using heartrate and movement in children
使用儿童心率和运动来增强基于消费者可穿戴设备的身体活动能量消耗预测方程的活动类型的实用性和可行性
  • 批准号:
    10677143
  • 财政年份:
    2023
  • 资助金额:
    $ 35.81万
  • 项目类别:
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
  • 批准号:
    10679189
  • 财政年份:
    2023
  • 资助金额:
    $ 35.81万
  • 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
  • 批准号:
    10797056
  • 财政年份:
    2023
  • 资助金额:
    $ 35.81万
  • 项目类别:
Digital monitoring of autonomic activity to detect empathy loss in behavioral variant frontotemporal dementia
对自主活动进行数字监测以检测行为变异型额颞叶痴呆的同理心丧失
  • 批准号:
    10722938
  • 财政年份:
    2023
  • 资助金额:
    $ 35.81万
  • 项目类别:
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
  • 批准号:
    10677271
  • 财政年份:
    2023
  • 资助金额:
    $ 35.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了