Technologies to drastically boost photon sensitivity for brain-dedicated PET
大幅提高大脑专用 PET 光子灵敏度的技术
基本信息
- 批准号:9420111
- 负责人:
- 金额:$ 41.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnatomyBindingBrainCaliberClinicalCollectionCompton radiationCoupledCrystallizationDataDetectionDevelopmentDimensionsElectronicsElementsEventFunctional Magnetic Resonance ImagingGoalsHumanImageIncidenceIncomeLengthLightMagnetic ResonanceMagnetic Resonance ImagingMeasurementMeasuresMethodsMolecularNeuromodulatorNeurotransmitter ReceptorNeurotransmittersNoisePatientsPerformancePhotonsPositioning AttributePositron-Emission TomographyPriceProcessPropertyRecoveryReportingResearchResolutionSensory ReceptorsSideSignal TransductionSystemTechniquesTechnologyTestingTimeTissuesTracerTranslatingTranslationsWidthWorkanalogcost effectivedesigndetectordigitalimage reconstructionimprovedinnovationinterestkinematicsmillisecondneurochemistryneuroimagingnext generationnoveloperationphoton-counting detectorreceptorreceptor functionresponseretinal rodsspatiotemporaltargeted treatmenttwo-dimensionaluptakeworking group
项目摘要
Project Summary/Abstract
According to the BRAIN 2025 working group report, there is a need to drastically improve the spatiotemporal
resolution of positron emission tomography (PET), in order to facilitate the translation of new tracers that target
neuroreceptor function and dynamic PET imaging on the milliseconds timescale. To address this challenge, we
propose to demonstrate feasibility of a next generation annihilation photon detector module that, if successful, will
serve as the fundamental building block of an advanced brain-dedicated PET system to be developed in follow-on
work after this feasibility stage. This next-generation system design shows promise to transform the capabilities of
PET in human neuroimaging through substantial (>10-fold) boosts in reconstructed image signal-to-noise ratio
(SNR) and contrast-to-noise ration (CNR). Besides employing a smaller system diameter (e.g. 32 cm diameter)
compared to the standard whole body PET system, this proposed enhancement is enabled by two unique features
proposed (1) 100 picosecond (ps) coincidence time resolution (CTR), and (2) the ability to measure the energy and
three-dimensional (3D) position of one or more annihilation photon interactions in the detector. These two new
capabilities are achieved through a highly innovative scintillation detector configuration described in detail in the
proposal. By precisely measuring the flight time of annihilation photons from their emission point within the patient to
the detectors, the time-of-flight (TOF) PET technique enables a significant image SNR and CNR boost because it
allows more events to be placed closer to their true point of emission along detector response lines of the system
during the image reconstruction process. The key to better TOF-PET performance is to improve the annihilation
photon pair CTR measured between any two detection elements in the system. Current commercially available PET
systems achieve a CTR of roughly 350 to 800 ps full-width-at-half-maximum (FWHM). The proposed goal of 100 ps
FWHM CTR alone represents a significant PET technology advance. But the novel detector configuration proposed
also enables another capability not possible with the conventional PET detector. Owing to the fact that most
incoming 511 keV photons undergo inter-crystal Compton scatter in the detectors, we can exploit the kinematics of
that process to estimate the photon angle-of-incidence. If successful, that capability enables us to accurately
position the first interaction of such multi-crystal events, but also offers the possibility to retain a high fraction of
photon events that are normally rejected by a conventional PET system, such as single (unpaired) photons, random
coincidences, tissue-scatter coincidences, and multiple (>2) photon coincidences. Since these normally-discarded
events are over 10-fold more probable than true coincidence events in a standard PET study, this 3D position
sensitive detector technology shows promise as another method to greatly boost photon sensitivity, and thus
reconstructed image SNR. In this project we will design and develop two next-generation PET detectors and
integrate them into MRI-compatible detector modules. The performance of these modules will be characterized
outside and inside a 3 Tesla clinical MRI system to demonstrate feasibility of this concept.
项目概要/摘要
根据BRAIN 2025工作组报告,需要大幅改善时空
正电子发射断层扫描(PET)的分辨率,以促进针对目标的新示踪剂的翻译
神经感受器功能和毫秒时间尺度的动态 PET 成像。为了应对这一挑战,我们
建议证明下一代湮没光子探测器模块的可行性,如果成功,将
作为后续开发的先进大脑专用 PET 系统的基本构建模块
在此可行性阶段之后进行工作。这种下一代系统设计有望改变
PET 在人类神经成像中显着提高(>10 倍)重建图像信噪比
(SNR)和对比噪声比(CNR)。除了采用较小的系统直径(例如 32 厘米直径)
与标准全身 PET 系统相比,所提出的增强功能是通过两个独特的功能实现的
建议 (1) 100 皮秒 (ps) 符合时间分辨率 (CTR),以及 (2) 测量能量和能量的能力
探测器中一个或多个湮灭光子相互作用的三维 (3D) 位置。这两个新
功能是通过高度创新的闪烁探测器配置实现的,详细描述在
提议。通过精确测量湮灭光子从患者体内发射点的飞行时间,
在探测器中,飞行时间 (TOF) PET 技术可显着提高图像 SNR 和 CNR,因为它
允许更多事件沿着系统的探测器响应线放置在更靠近其真实发射点的位置
在图像重建过程中。更好的TOF-PET性能的关键是提高湮灭
测量系统中任意两个检测元件之间的光子对 CTR。目前市售的PET
系统的 CTR 约为 350 至 800 ps 半高全宽 (FWHM)。建议的 100 ps 目标
仅 FWHM CTR 就代表了 PET 技术的重大进步。但提出的新颖探测器配置
还实现了传统 PET 探测器无法实现的另一种功能。由于大多数
传入的 511 keV 光子在探测器中经历晶间康普顿散射,我们可以利用以下运动学
该过程估计光子入射角。如果成功的话,这种能力使我们能够准确地
定位此类多晶事件的第一次相互作用,但也提供了保留高比例的可能性
通常被传统 PET 系统拒绝的光子事件,例如单(不成对)光子、随机光子
巧合、组织散射巧合和多个(>2)光子巧合。由于这些通常被丢弃的
在标准 PET 研究中,该 3D 位置事件的可能性比真实巧合事件高 10 倍以上
灵敏探测器技术有望成为另一种大大提高光子灵敏度的方法,因此
重建图像信噪比。在这个项目中,我们将设计和开发两种下一代 PET 探测器和
将它们集成到 MRI 兼容的探测器模块中。这些模块的性能将被表征
3 特斯拉临床 MRI 系统的外部和内部,以证明这一概念的可行性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CRAIG S LEVIN其他文献
CRAIG S LEVIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CRAIG S LEVIN', 18)}}的其他基金
Exploring concepts in nanophotonics and metamaterials to create a 'super-scintillator' for time-of-flight positron emission tomography
探索纳米光子学和超材料概念,创建用于飞行时间正电子发射断层扫描的“超级闪烁体”
- 批准号:
10509318 - 财政年份:2022
- 资助金额:
$ 41.57万 - 项目类别:
Translation and Validation of a Radiofrequency-Penetrable PET insert for Simultaneous PET/MRI imaging of Neurological Disorders
用于神经系统疾病同步 PET/MRI 成像的射频可穿透 PET 插入物的转化和验证
- 批准号:
10616704 - 财政年份:2022
- 资助金额:
$ 41.57万 - 项目类别:
Translation and Validation of a Radiofrequency-Penetrable PET insert for Simultaneous PET/MRI imaging of Neurological Disorders
用于神经系统疾病同步 PET/MRI 成像的射频可穿透 PET 插入物的转化和验证
- 批准号:
10365492 - 财政年份:2022
- 资助金额:
$ 41.57万 - 项目类别:
Exploring concepts in nanophotonics and metamaterials to create a 'super-scintillator' for time-of-flight positron emission tomography
探索纳米光子学和超材料概念,创建用于飞行时间正电子发射断层扫描的“超级闪烁体”
- 批准号:
10685592 - 财政年份:2022
- 资助金额:
$ 41.57万 - 项目类别:
RF-penetrable PET ring for acquiring simultaneous time-of-flight PET and MRI data
可穿透射频的 PET 环,用于同时采集飞行时间 PET 和 MRI 数据
- 批准号:
10268119 - 财政年份:2020
- 资助金额:
$ 41.57万 - 项目类别:
A new direction to achieve ultra-fast timing for positron emission tomography
实现正电子发射断层扫描超快定时的新方向
- 批准号:
9444922 - 财政年份:2017
- 资助金额:
$ 41.57万 - 项目类别:
Exploring a promising design for the next generation time-of-flight PET detector
探索下一代飞行时间 PET 探测器的有前途的设计
- 批准号:
10171564 - 财政年份:2017
- 资助金额:
$ 41.57万 - 项目类别:
Exploring a promising design for the next generation time-of-flight PET detector
探索下一代飞行时间 PET 探测器的有前途的设计
- 批准号:
9918874 - 财政年份:2017
- 资助金额:
$ 41.57万 - 项目类别:
Technologies to drastically boost photon sensitivity for brain-dedicated PET
大幅提高大脑专用 PET 光子灵敏度的技术
- 批准号:
9568754 - 财政年份:2017
- 资助金额:
$ 41.57万 - 项目类别:
Stanford Molecular Imaging Scholars (SMIS) Program
斯坦福大学分子成像学者 (SMIS) 计划
- 批准号:
10410895 - 财政年份:2016
- 资助金额:
$ 41.57万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Advancing Systematic Delivery of Oncolytic Adenovirus for Pancreatic Cancer
推进溶瘤腺病毒治疗胰腺癌的系统递送
- 批准号:
10734709 - 财政年份:2023
- 资助金额:
$ 41.57万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 41.57万 - 项目类别:
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
- 批准号:
10665493 - 财政年份:2023
- 资助金额:
$ 41.57万 - 项目类别:
A democratized platform for mapping the spatial epigenome in tissue
用于绘制组织空间表观基因组图谱的民主化平台
- 批准号:
10822023 - 财政年份:2023
- 资助金额:
$ 41.57万 - 项目类别:
Integrin regulation of vascular function in Alzheimer's disease
整合素对阿尔茨海默病血管功能的调节
- 批准号:
10901016 - 财政年份:2023
- 资助金额:
$ 41.57万 - 项目类别: