Vestibular control of axial motor circuitry
轴向运动电路的前庭控制
基本信息
- 批准号:9198220
- 负责人:
- 金额:$ 24.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-08 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAxonBehaviorBehavior ControlBehavioralBrain StemCalciumCalcium SignalingCellsClassificationContralateralDataDiabetes MellitusDorsalDyesEarElderlyElectrophysiology (science)ElectroporationElementsEnvironmentEquilibriumEsthesiaFishesForce of GravityFutureGoalsGravitationHealth HazardsHumanImageImpairmentInterneuronsIpsilateralLabelLabyrinthLeftLimb structureLocomotionMammalsMeasuresMethodsMorphologyMotionMotorMotor NeuronsMotor outputMovementMuscleMusculoskeletal EquilibriumNeuronsNeuropathyOrganismOutputPathway interactionsPatternPhasePostureRecruitment ActivityResearchRoleSelf-control as a personality traitSensorySideSignal TransductionSpecificitySpinalSpinal CordSwimmingSynapsesSystemTestingTherapeutic InterventionTorqueTrainingTransgenic OrganismsTranslatingVertebral columnVertebratesVertigoZebrafishawakecell typeexperimental studyfallsfictional worksimprovedin vivolimb movementmotor controlmutantneural circuitnovelotoconiasensorsensory inputvestibulo-ocular reflex
项目摘要
Project Summary
Good control of posture and orientation is vital for animals as they make movements or navigate the
environment. Vertebrates rely on the vestibulospinal system to translate gravity sensations from the inner ear
into appropriate compensatory trunk (axial) and limb movements to stabilize and orient themselves. Although
this system exists in all vertebrates and is crucial for survival, research on it has languished due to the technical
difficulties in recording from vestibular and spinal neurons, especially during animal motion. My long-term
goal is to define the means by which vestibular and cerebellar pathways influence spinal circuit activity
patterns to fine-tune behavioral outputs. The objective of this proposal is to determine how vestibular signals
are translated into appropriate compensatory postural adjustments by defining the synaptic circuit by which
vestibular neurons govern the activity of spinal motor neurons and interneurons. To surmount the technical
difficulties that have limited prior efforts, I propose to use the larval zebrafish. Zebrafish are an excellent
system for this line of research because of the accessibility of their brainstem and spinal column, and the strong
homologies between zebrafish and mammalian spinal circuits. Thus, circuit mapping between the brainstem
and spinal cord can be performed with much greater ease than in mammalian systems, and the results are
likely to be applicable across vertebrates. Microcircuit activity can then be translated into behavioral output
due to the relative simplicity of the zebrafish body plan, yielding a complete picture of this vital sensorimotor
transformation. In Aim 1, a combination of calcium signaling and electrophysiology in vivo will be used to
examine differential recruitment of dorsal and ventral musculature while the animal attempts to right itself
from side-lying to upright. The requirement for vestibular signals will be tested in mutant animals missing
their otoliths (gravity sensors). These experiments will identify how motor pools are activated by vestibular
signals to drive self-righting. In Aim 2, vestibular neurons will be stimulated during in vivo recordings from
identified spinal motor neurons to test how vestibulospinal drive is distributed to the appropriate pools of
motor neurons for self-righting. Finally, Aim 3 will extend this research to spinal interneurons, to identify how
descending inputs regulate interneuronal circuits for highly specific modulation of movement. Impairments in
vestibulospinal signaling can cause vertigo and falls, a major health hazard in the elderly. Thus, a complete
sensory-to-motor analysis of vestibulospinal signaling will advance our understanding of descending control of
behavior and potentially identify strategies for improving human postural control.
项目摘要
良好的姿势和定向的控制对于动物进行动作或导航至关重要
环境。脊椎动物依靠前庭脊髓系统从内耳转化重力感觉
进入适当的补偿躯干(轴向)和肢体运动,以稳定和定向。虽然
该系统存在于所有脊椎动物中,对于生存至关重要,由于技术的研究而对其进行研究。
从前庭和脊柱神经元记录的困难,尤其是在动物运动过程中。我的长期
目标是定义前庭和小脑途径影响脊柱电路活动的手段
微调行为输出的模式。该建议的目的是确定前庭信号
通过定义突触电路,将其转化为适当的补偿性姿势调整
前庭神经元控制脊柱运动神经元和中间神经元的活性。克服技术
我建议使用幼虫斑马鱼的困难。斑马鱼很棒
由于其脑干和脊柱的可及性,并且强大
斑马鱼和哺乳动物脊柱回路之间的同源性。因此,脑干之间的电路映射
脊髓可以比在哺乳动物系统中更容易进行,结果是
可能适用于脊椎动物。然后可以将微电路活动转化为行为输出
由于斑马鱼身体计划的相对简单性,产生了这种重要感觉运动的完整图片
转型。在AIM 1中,体内钙信号传导和电生理学的组合将用于
在动物试图正确的同时,检查背侧和腹肌肉的差异招募
从侧面到直立。前庭信号的需求将在缺失的突变动物中进行测试
它们的耳石(重力传感器)。这些实验将确定如何通过前庭激活电动池
驱动自瞄准的信号。在AIM 2中,将在体内记录中刺激前庭神经元
确定的脊柱运动神经元,以测试前庭脊髓驱动如何分布到适当的池
运动神经元用于自晶。最后,AIM 3将将这项研究扩展到脊柱中间神经元,以确定如何
下降的输入调节神经元电路,以高度特异性的运动调节。障碍
前庭脊髓信号传导可能会导致眩晕和瀑布,这是老年人的主要健康危害。因此,一个完整
前庭脊髓信号传导的感觉到运动分析将提高我们对降落控制的理解
行为并有可能确定改善人类姿势控制的策略。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martha W Bagnall其他文献
Martha W Bagnall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martha W Bagnall', 18)}}的其他基金
Longitudinal structure of spinal premotor circuits
脊髓前运动回路的纵向结构
- 批准号:
10577360 - 财政年份:2023
- 资助金额:
$ 24.12万 - 项目类别:
SYNAPTIC COMPUTATIONS IN CENTRAL VESTIBULAR NEURONS
中央前庭神经元的突触计算
- 批准号:
10161765 - 财政年份:2018
- 资助金额:
$ 24.12万 - 项目类别:
SYNAPTIC COMPUTATIONS IN CENTRAL VESTIBULAR NEURONS
中央前庭神经元的突触计算
- 批准号:
9927486 - 财政年份:2018
- 资助金额:
$ 24.12万 - 项目类别:
SYNAPTIC COMPUTATIONS IN CENTRAL VESTIBULAR NEURONS
中央前庭神经元的突触计算
- 批准号:
10399537 - 财政年份:2018
- 资助金额:
$ 24.12万 - 项目类别:
相似国自然基金
多场耦合下轴突多尺度力学行为的非完整动力学建模与分析
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
多场耦合下轴突多尺度力学行为的非完整动力学建模与分析
- 批准号:12272148
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
前额叶皮层神经元的轴突功能异常在精神分裂样行为中的作用
- 批准号:31800991
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
多肽纳米凝胶支架引导二甲胺四环素定向活化的小胶质细胞植入对损伤脊髓神经元和轴突影响的动物实验研究
- 批准号:31872310
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
α-Chimaerin在缺血性脑卒中轴突出芽和功能修复的作用和机制研究
- 批准号:81671229
- 批准年份:2016
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 24.12万 - 项目类别:
The Structure and Function of Ipsilateral Corticospinal Projections
同侧皮质脊髓投射的结构和功能
- 批准号:
10678301 - 财政年份:2023
- 资助金额:
$ 24.12万 - 项目类别:
Physiological Function of Persistent Inward Currents in Motor Neurons
运动神经元持续内向电流的生理功能
- 批准号:
10663030 - 财政年份:2023
- 资助金额:
$ 24.12万 - 项目类别:
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 24.12万 - 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 24.12万 - 项目类别: