Methods for Integrating Functional Data into Complex Disease Genetic Analyses
将功能数据整合到复杂疾病遗传分析中的方法
基本信息
- 批准号:9308935
- 负责人:
- 金额:$ 46.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressArchitectureArchivesCharacteristicsColorectal CancerComplexComputer softwareDataDatabasesDevelopmentDiseaseElementsEncyclopedia of DNA ElementsEnvironmentEnvironmental Risk FactorEpigenetic ProcessGene ExpressionGenesGeneticGenetic Predisposition to DiseaseGenetic VariationGenomeGenome MappingsGenomicsGenotypeGoalsHereditary DiseaseHeritabilityHuman Genome ProjectInformation NetworksInheritedLeadLinkage DisequilibriumMalignant NeoplasmsMethodsMolecularNucleotidesParticipantPropertyResearch PersonnelResourcesRiskSample SizeSignal TransductionTechniquesTechnologyTestingTheoretical StudiesTissuesVariantWorkbaseepidemiologic datagene discoverygene environment interactiongene interactiongenetic analysisgenetic associationgenetic epidemiologygenetic variantgenome sequencinggenome wide association studygenome-widegenomic datahigh throughput technologyinsightlifestyle factorsmethod developmentnext generation sequencingnovelopen sourcepersonalized strategiespreventpublic health relevancerare variantscreeningstatisticstraitwhole genome
项目摘要
DESCRIPTION (provided by applicant): Recent developments in The Human Genome Project and breakthroughs in different types of high throughput technologies have changed how researchers approach complex diseases by moving toward cross- disciplinary studies, collecting data on all facets of disease. The objective of this application is to develop efficient statistica and computational approaches to integrating genetics, genomics and epidemiologic data for understanding the interplay of genetics and environment in complex diseases, with the long-term goal of devising personalized strategies to prevent and treat these diseases. Genome-wide association studies have identified thousands of trait associated genetic variants, and provided valuable insights into the genetic architecture of these traits. However, most variants identified so far confer relatively small increments in risk, and explain only a small proportion o heritability, leading many to question how the remaining 'missing' heritability can be explained. This application addresses this 'missing' heritability from several aspects: rare variant association analysis, gene-environment interaction, and heritability estimation beyond additive genetic effects. Accordingly, we propose the following specific aims. Aim 1 is to develop methods for integrating functional information into rare variants association analysis. To achieve this goal, Aim 1 includes developing databases of tissue-specific functional annotation and constructing regulatory expression networks (eQTL) from public data generated from large collaborative projects such as the Encyclopedia of DNA Elements and the Genotype Tissue Expression. The theoretical properties of the rare variants analysis will also be studied to devise
powerful tests in consideration of genomic features such as linkage disequilibrium and sparse signals. Aim 2 is to develop methods for rare variants gene-environment interaction (GxE) that incorporates functional information. Efficient and versatile screening strategies will also be developed for genome-wide discovery of GxE. Even though this aim is focused on GxE, the methods are also applicable to gene-gene interaction (GxG). Aim 3 is to develop methods for estimating heritability that incorporates GxE and GxG to understand the complex interplay between genetic susceptibility and environment The proposed work is motivated by a large consortium on colorectal cancer, which has over 40,000 participants from well-characterized studies with detailed data on both environmental risk factors and GWAS and whole genome sequencing data. The developed methods will be applied to the consortium to gain new insights in colorectal cancer and demonstrate the feasibility of the methods. Since the methods are applicable to other complex diseases and traits, R-based open source software will be developed and submitted to the Comprehensive R Archive Network for broad dissemination.
描述(由申请人提供):人类基因组计划的最新发展和不同类型高通量技术的突破已经改变了研究人员通过跨学科研究、收集疾病各个方面的数据来处理复杂疾病的方式。应用程序是开发有效的统计和计算方法来整合遗传学、基因组学和流行病学数据,以了解复杂疾病中遗传学和环境的相互作用,长期目标是制定个性化策略来预防和治疗这些疾病全基因组关联研究已经发现了数千种与性状相关的遗传变异,并为这些性状的遗传结构提供了有价值的见解。然而,迄今为止发现的大多数变异带来的风险增量相对较小,并且只能解释一小部分遗传性。 ,导致许多人质疑如何解释剩余的“缺失”遗传力,该应用程序从几个方面解决了这种“缺失”遗传力:稀有变异关联分析、基因-环境相互作用以及超越加性遗传效应的遗传力估计。具体如下目标 1 是开发将功能信息整合到稀有关联分析中的方法,为了实现这一目标,目标 1 包括开发组织特异性功能注释数据库并根据大型合作项目生成的公共数据构建调控表达网络 (eQTL)。作为 DNA 元素和基因型组织表达百科全书,稀有变异分析的理论特性也将被研究和设计。
考虑到连锁不平衡和稀疏信号等基因组特征的强大测试,目标 2 是开发包含功能信息的罕见变异基因-环境相互作用 (GxE) 的方法,用于全基因组发现。尽管该目标主要针对 GxE,但这些方法也适用于基因-基因相互作用 (GxG)。目标 3 是开发结合 GxE 的遗传力估计方法。和 GxG 来了解遗传易感性和环境之间复杂的相互作用这项拟议的工作是由结直肠癌大型联盟推动的,该联盟拥有超过 40,000 名来自具有良好特征的研究的参与者,这些研究提供了有关环境风险因素和 GWAS 的详细数据以及全基因组测序数据所开发的方法将应用于该联盟,以获得对结直肠癌的新见解,并证明该方法的可行性,因为这些方法适用于其他复杂的疾病和特征,因此基于 R 的开源软件将被采用。开发并提交给综合 R 档案网络以供广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Hsu其他文献
Li Hsu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Hsu', 18)}}的其他基金
Statistical Methods for Inferring Gene-Phenotype Associations Using Omic Data from Gene Knockout and Human Phenotype Studies
使用基因敲除和人类表型研究的组学数据推断基因表型关联的统计方法
- 批准号:
10733165 - 财政年份:2023
- 资助金额:
$ 46.42万 - 项目类别:
Integrative Genomics into Genetic Association Studies of Blood Pressure and Stroke in African Americans
将基因组学整合到非裔美国人血压和中风的遗传关联研究中
- 批准号:
10372063 - 财政年份:2022
- 资助金额:
$ 46.42万 - 项目类别:
Integrative Genomics into Genetic Association Studies of Blood Pressure and Stroke in African Americans
将基因组学整合到非裔美国人血压和中风的遗传关联研究中
- 批准号:
10656163 - 财政年份:2022
- 资助金额:
$ 46.42万 - 项目类别:
Statistical Methods for Analysis of Tumor Heterogeneity in Genetic Epidemiology
遗传流行病学中肿瘤异质性分析的统计方法
- 批准号:
9817026 - 财政年份:2015
- 资助金额:
$ 46.42万 - 项目类别:
Statistical Methods for Analysis of Tumor Heterogeneity in Genetic Epidemiology
遗传流行病学中肿瘤异质性分析的统计方法
- 批准号:
10432024 - 财政年份:2015
- 资助金额:
$ 46.42万 - 项目类别:
Methods for Integrating Functional Data into Complex Disease Genetic Analyses
将功能数据整合到复杂疾病遗传分析中的方法
- 批准号:
9087202 - 财政年份:2015
- 资助金额:
$ 46.42万 - 项目类别:
Statistical Methods for Analysis of Tumor Heterogeneity in Genetic Epidemiology
遗传流行病学中肿瘤异质性分析的统计方法
- 批准号:
10602853 - 财政年份:2015
- 资助金额:
$ 46.42万 - 项目类别:
Statistical Methods for Genetic Epidemiology Studies
遗传流行病学研究的统计方法
- 批准号:
9027514 - 财政年份:2015
- 资助金额:
$ 46.42万 - 项目类别:
Statistical Methods for Analysis of Tumor Heterogeneity in Genetic Epidemiology
遗传流行病学中肿瘤异质性分析的统计方法
- 批准号:
10186707 - 财政年份:2015
- 资助金额:
$ 46.42万 - 项目类别:
Statistical Methods for Analysis of Tumor Heterogeneity in Genetic Epidemiology
遗传流行病学中肿瘤异质性分析的统计方法
- 批准号:
10656385 - 财政年份:2015
- 资助金额:
$ 46.42万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Applying Innovative Artificial Intelligence Approaches to a Large Sleep Physiologic Biorepository to Integrate Sleep Disruption in Cardiovascular Risk Calculation
将创新的人工智能方法应用于大型睡眠生理生物库,将睡眠中断纳入心血管风险计算
- 批准号:
10731500 - 财政年份:2023
- 资助金额:
$ 46.42万 - 项目类别:
Advancing Digital Pathology through Novel Machine Learning Methodologies
通过新颖的机器学习方法推进数字病理学
- 批准号:
10458237 - 财政年份:2022
- 资助金额:
$ 46.42万 - 项目类别:
Survival genetics methods for detecting sex-dependent genetic effects on Alzheimer’s disease
用于检测阿尔茨海默病性别依赖性遗传效应的生存遗传学方法
- 批准号:
10670493 - 财政年份:2022
- 资助金额:
$ 46.42万 - 项目类别: