Project 3: Inter-Relationships and Prognostic Significance of Breast Cancer Radiomic Risk Features, Tissue Microenvironment, and Adiposity
项目 3:乳腺癌放射风险特征、组织微环境和肥胖的相互关系和预后意义
基本信息
- 批准号:10716156
- 负责人:
- 金额:$ 29.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenAdipose tissueAmericanArchitectureArtificial IntelligenceAsian AmericansBiological AssayBiological MarkersBloodBody fatBody mass indexBreastBreast Cancer ModelBreast Cancer PatientBreast Cancer Risk FactorBreast Cancer geneCD36 geneCD8B1 geneCalibrationCancer PrognosisCd68Cessation of lifeCharacteristicsChineseClinical MarkersCohort StudiesDiseaseDisparityERBB2 geneEarly DiagnosisEarly treatmentEstrogen ReceptorsEstrogensEthnic OriginEthnic PopulationEvaluationFatty acid glycerol estersGene Expression ProfileGoalsHawaiiHealthHigh Risk WomanImageIncidenceJapanJapaneseJapanese AmericanJointsLinkMachine LearningMammary NeoplasmsMammographic DensityMammographic screeningMammographyMeasuresMediatingMinorityMinority WomenMolecularMorbidity - disease rateNative HawaiianNative Hawaiian or Other Pacific IslanderObesityOrganOutcomePacific IslandsParticipantPathologyPatternPersonal SatisfactionPhenotypePopulationPopulation SciencesPostmenopausePreventionPrimary PreventionProgesterone ReceptorsPrognosisRaceReportingResearchResidual stateResourcesRiskRisk FactorsSourceSubgroupSurvival AnalysisTherapeuticTissue BanksTissuesTranslatingTumor MarkersVisceralVisceral fatVisitWomanZNF217 geneanticancer researchbreast cancer survivalbreast densitybreast imagingcancer health disparitycancer survivalclinically relevantcohortcomparativedeep learningethnic differenceethnic minorityexperiencegenetic risk factorhormone receptor-positiveimaging biomarkerimprovedindividualized medicinemalignant breast neoplasmmammography registrymigrationminority healthminority health disparitymodifiable riskmolecular modelingmolecular subtypesmortalitymulti-ethnicnano-stringprognosticprognostic modelprognostic significanceprotein biomarkerspublic health relevanceracial differenceracial diversityracial populationradiomicsreproductiverisk prediction modelscreeningsubcutaneoustissue biomarkerstumortumor registryvirtual
项目摘要
SUMMARY / ABSTRACT
The risk of breast cancer among U.S. women dramatically differs across racial and ethnic populations.
Nonetheless, Asian American and Native Hawaiian/Pacific Islander (AANHPI) ethnic minority women have been
historically underrepresented in breast cancer research. Consequently, there are major gaps in understanding
the basis of disparities in these populations including high incidence and mortality among Native Hawaiians and
a steadily rising incidence with comparatively favorable outcomes among Japanese Americans. Obesity and
breast density, established breast cancer risk factors, vary widely across AANHPI women and have direct
implications for mammographic screening and primary prevention. Our research to date provides strong
evidence that body fat distribution, including visceral adipose tissue (VAT), is an important predictor of breast
cancer risk. The influence of adiposity on breast density and other aspects of breast architecture that can be
discerned through mammographic screening (e.g. radiomic features) is not well understood. Our long-term goal
is to elucidate the breast cancer disparities seen in understudied minority AANHPI subgroups (Native Hawaiian,
Micronesian, Japanese, Chinese, Filipina) that can be translated to improved prevention, early detection, and
therapeutic strategies. Our central hypothesis is that established radiomic risk features have unique
associations with breast cancer incidence in AANHPI subgroups and that they are correlated with tissue
biomarkers of risk and prognosis and with obesity, especially VAT. Study resources include the statewide
Hawai`i Pacific Islands Mammography Registry linked to the SEER Hawai`i Tumor Registry and its Residual
Tissue Repository (RTR), and to the Hawai`i component of the Multiethnic Cohort Study (MEC). Our study is
focused on the minority health of AANHPI, with the following aims: 1) Characterize the relationships of
established breast imaging radiomic risk features with tissue protein biomarker expression profiles reflecting
the tissue microenvironment and breast cancer prognosis and with disease-specific survival; 2) Characterize
the joint relationships of breast radiomic risk features and different measures of adiposity, including VAT, with
post-menopausal breast cancer risk among Native Hawaiian, Japanese American, and White MEC
participants. 3) Calibrate commonly used risk prediction models for breast cancer by including established
breast radiomic (AI and machine learning) risk features from 2D and 3D mammography in AAPHI and White
women overall and by estrogen/progesterone receptor and HER-2 status. The expected outcome of the
proposed study is to further our understanding of unique relationships between imaging biomarkers derived
from advanced machine learning approaches and race/ethnicity, tissue molecular characteristics and adiposity
phenotypes, which will improve risk and prognosis model accuracy and better identify high risk women for further
assessment or tailored therapy.
摘要/摘要
美国女性患乳腺癌的风险在不同种族和族裔人群中存在显着差异。
尽管如此,亚裔美国人和夏威夷原住民/太平洋岛民 (AANHPI) 少数族裔妇女一直
历史上在乳腺癌研究中代表性不足。因此,在认识上存在重大差距
这些人口差异的基础包括夏威夷原住民的高发病率和死亡率
日裔美国人的发病率稳步上升,结果相对较好。肥胖和
乳腺密度、已确定的乳腺癌危险因素在 AANHPI 女性中差异很大,并且直接影响
对乳房X光检查和初级预防的影响。我们迄今为止的研究提供了强有力的
有证据表明身体脂肪分布,包括内脏脂肪组织(VAT),是乳房发育的重要预测因素
癌症风险。肥胖对乳房密度和乳房结构其他方面的影响
通过乳房X线照相筛查(例如放射组学特征)识别的疾病尚不清楚。我们的长期目标
旨在阐明在未充分研究的少数民族 AANHPI 亚组(夏威夷原住民、
密克罗尼西亚语、日语、中国语、菲律宾语)可以转化为改善预防、早期发现和
治疗策略。我们的中心假设是,已确定的放射组学风险特征具有独特的
AANHPI 亚组中乳腺癌发病率的相关性以及它们与组织的相关性
风险和预后以及肥胖的生物标志物,尤其是增值税。研究资源包括全州范围
夏威夷太平洋岛屿乳腺 X 线摄影登记处与 SEER 夏威夷肿瘤登记处及其残留物相关联
组织存储库 (RTR) 以及多种族队列研究 (MEC) 的夏威夷部分。我们的研究是
重点关注 AANHPI 的少数群体健康状况,目标如下: 1)描述
建立了乳腺成像放射组学风险特征,其中组织蛋白生物标志物表达谱反映了
组织微环境和乳腺癌预后以及疾病特异性生存; 2)表征
乳房放射学风险特征与不同肥胖指标(包括增值税)的联合关系
夏威夷原住民、日裔美国人和白人 MEC 的绝经后乳腺癌风险
参与者。 3) 通过纳入已建立的模型来校准常用的乳腺癌风险预测模型
AAPHI 和 White 中 2D 和 3D 乳房 X 线摄影的乳腺放射组学(人工智能和机器学习)风险特征
女性总体情况以及雌激素/孕激素受体和 HER-2 状态。预期成果
拟议的研究是为了进一步了解成像生物标志物之间的独特关系
来自先进的机器学习方法和种族/民族、组织分子特征和肥胖
表型,这将提高风险和预后模型的准确性,并更好地识别高风险女性以进一步
评估或定制治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN Alan SHEPHERD其他文献
JOHN Alan SHEPHERD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN Alan SHEPHERD', 18)}}的其他基金
Novel Imaging Methods to Determine Breast Density
确定乳房密度的新成像方法
- 批准号:
7046575 - 财政年份:2005
- 资助金额:
$ 29.07万 - 项目类别:
相似国自然基金
面向腹部创伤的超声辅助诊断关键技术研究
- 批准号:62371121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
- 批准号:62303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
- 批准号:32360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
- 批准号:32371043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
具有主动摆动腹部的仿蝴蝶扑翼大机动飞行机理及样机关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantitative characterization of the liver-pancreas axis in diabetes via multiparametric magnetic resonance elastography
通过多参数磁共振弹性成像定量表征糖尿病肝胰轴
- 批准号:
10718333 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 29.07万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10556825 - 财政年份:2022
- 资助金额:
$ 29.07万 - 项目类别:
Depot-specific regulation of metabolism by adipose tissue stromal cell subpopulations
脂肪组织基质细胞亚群对代谢的特异性调节
- 批准号:
10685079 - 财政年份:2022
- 资助金额:
$ 29.07万 - 项目类别: