Broad Scale Genomic Analysis to Find Genes Associated with Depression Under Stres
大规模基因组分析寻找与压力下抑郁症相关的基因
基本信息
- 批准号:9317292
- 负责人:
- 金额:$ 28.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAmericanAntidepressive AgentsArchitectureAwarenessBiologicalCandidate Disease GeneChronicChronic stressCodeComplexDataData SetDepressed moodDevelopmentDiseaseEffectivenessEnvironmental Risk FactorEpidemiologyEtiologyFrequenciesGenesGeneticGenetic PolymorphismGenomeGenomic approachGenomicsGoalsHealth and Retirement StudyHeart DiseasesIndividualInheritedInternshipsInvestigationLife StressLongitudinal cohortMajor Depressive DisorderMedicalMental DepressionMental disordersMethodologyMethodsModelingPathway interactionsPatientsPatternPhenotypePhysiciansPublic HealthResearch DesignRetrospective StudiesRiskSamplingStressStudy SubjectTestingTimeTrainingUntranslated RNAVariantWorkWorld Health Organizationbasecase controlcohortdepressive symptomsdesigndisabilitydisorder riskepidemiology studyexomeexperiencefallsgenetic variantgenome wide association studygenome-wideimprovedinnovationnovelpredictive of treatment responseprospectivepublic health relevancestressor
项目摘要
DESCRIPTION (provided by applicant): Despite hundreds of linkage and association studies, including eight recent case-control genome-wide association studies (GWAS), there has been limited progress in identifying specific genes associated with depression. Epidemiological evidence indicates that life stress is a key factor in the etiology of depression. Indeed, there is
growing recognition that accounting for stress facilitates the identification of genes important in
the development of depression. Because of methodological limitations however, gene x stress studies have been limited from utilizing the broad-scale genomic approaches that have been successful in identifying genes in other complex disorders. Our long-term goal is to elucidate the pathophysiological architecture underlying depression to facilitate the development of improved treatments. Our objective in this application is to identify genetic variants associated with the development of depression under stress by utilizing medical internship as a model. The power and effectiveness of traditional gene x stress interaction studies have been compromised by the following study design limitations: 1) substantial variation in the type and intensity of stress between subjects 2) retrospective design and 3) loss of power due to tests of statistical interaction. Designing methods to overcome these limitations has been difficult because the onset of chronic stress is difficult to predict beforehand and the type of stress encountered by individuals varies greatly. Medical internship, the first year of professional physician training, presents a unique situation in which we can prospectively predict the onset of a uniform, chronic stressor and a dramatic increase in depressive symptoms. We hypothesize that both common and rare SNPs from across the genome will interact with internship stress to impact depressive symptom phenotypes. To test this hypothesis, we propose the following three specific aims: 1) identify longitudinal patterns of depressive symptoms under internship stress and factors associated with the depressive symptom patterns, 2) identify common and rare, functional genetic variants associated with depressive symptoms and depressive symptom trajectories during internship stress using cutting edge GWAS and Exome chip analysis and 3) assess whether significant associations with depressive symptoms in the intern sample replicate in other depression samples. Our approach is innovative because it takes advantage of a naturally occurring stress to overcome limitations of existing studies and allows us to perform a broad-scale, longitudinal cohort gene x stress study. This project is significant because it has the potential to identify key genetic factors involved in depression under stress, an advance that holds promises in predicting treatment response and identifying novel targets for antidepressant development.
描述(由申请人提供):尽管有数百个连锁和关联研究,包括八项最近的病例对照基因组关联研究(GWAS),但在识别与抑郁症相关的特定基因方面的进展有限。流行病学证据表明,生命压力是抑郁症病因的关键因素。确实,有
越来越认识到应对压力会有助于识别重要的基因
抑郁症的发展。然而,由于使用方法上的局限性,基因X胁迫研究受到了利用在其他复杂疾病中成功鉴定基因的广泛基因组方法的限制。我们的长期目标是阐明抑郁症的病理生理结构,以促进改善治疗的发展。我们在本应用中的目标是通过利用医疗实习作为模型来确定与压力下抑郁症的发展相关的遗传变异。传统基因X压力相互作用研究的功率和有效性已因以下研究设计局限性而损害:1)受试者之间应力类型和强度的实质性变化2)回顾性设计和3)由于统计相互作用的测试而导致的功率损失。设计克服这些局限性的方法非常困难,因为很难事先预测慢性压力的发作,并且个人遇到的压力类型差异很大。医疗实习是专业医师培训的第一年,它提出了一种独特的情况,我们可以预测统一,慢性压力源和抑郁症状的急剧增加。我们假设来自整个基因组的常见和稀有SNP都会与实习压力相互作用,以影响抑郁症状表型。为了检验这一假设,我们提出以下三个具体目的:1)在实习压力和与抑郁症状模式相关的因素下确定抑郁症状的纵向模式,2)确定常见且罕见的功能性,功能性遗传变异,与抑郁症状的抑郁症状和抑郁症状相关的抑郁症状轨迹和在实习期间使用降低型GWAS和Exeme Shimations进行抑郁症状的抑郁症状以及其他相关性的抑制作用3)在其他抑郁症状中是否相关性。我们的方法具有创新性,因为它利用了自然发生的压力来克服现有研究的局限性,并使我们能够进行广泛的,纵向的队列基因X压力研究。该项目之所以重要,是因为它具有识别压力下抑郁症涉及的关键遗传因素,这一前进有望预测治疗反应并确定抗抑郁药发育的新目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SRIJAN SEN其他文献
SRIJAN SEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SRIJAN SEN', 18)}}的其他基金
Mobile Technology to Identify Behavioral Mechanisms Linking Genetic Variation and Depression
移动技术识别遗传变异和抑郁症之间的行为机制
- 批准号:
10728697 - 财政年份:2023
- 资助金额:
$ 28.84万 - 项目类别:
Mobile Technology to Identify Behavorial Mechanisms Linking Genetic Variation and Depression
移动技术识别与遗传变异和抑郁症相关的行为机制
- 批准号:
10161829 - 财政年份:2013
- 资助金额:
$ 28.84万 - 项目类别:
Broad Scale Genomic Analysis to Find Genes Associated with Depression Under Stres
大规模基因组分析寻找与压力下抑郁症相关的基因
- 批准号:
8573528 - 财政年份:2013
- 资助金额:
$ 28.84万 - 项目类别:
Mobile Technology to Identify Behavorial Mechanisms Linking Genetic Variation and Depression
移动技术识别与遗传变异和抑郁症相关的行为机制
- 批准号:
10399597 - 财政年份:2013
- 资助金额:
$ 28.84万 - 项目类别:
Broad Scale Genomic Analysis to Find Genes Associated with Depression Under Stres
大规模基因组分析寻找与压力下抑郁症相关的基因
- 批准号:
8874303 - 财政年份:2013
- 资助金额:
$ 28.84万 - 项目类别:
Mobile Technology to Identify Behavorial Mechanisms Linking Genetic Variation and Depression
移动技术识别与遗传变异和抑郁症相关的行为机制
- 批准号:
9524194 - 财政年份:2013
- 资助金额:
$ 28.84万 - 项目类别:
Medical Internship as a Model to Find Gene x Stress Interactions in Depression
医学实习作为寻找抑郁症中基因与压力相互作用的模型
- 批准号:
8278523 - 财政年份:2011
- 资助金额:
$ 28.84万 - 项目类别:
Medical Internship as a Model to Find Gene x Stress Interactions in Depression
医学实习作为寻找抑郁症中基因与压力相互作用的模型
- 批准号:
8460930 - 财政年份:2011
- 资助金额:
$ 28.84万 - 项目类别:
Utilizing Medical Internship to Identify Genetic Variation Associated with Depres
利用医学实习来识别与抑郁症相关的基因变异
- 批准号:
8164789 - 财政年份:2011
- 资助金额:
$ 28.84万 - 项目类别:
Medical Internship as a Model to Find Gene x Stress Interactions in Depression
医学实习作为寻找抑郁症中基因与压力相互作用的模型
- 批准号:
8645757 - 财政年份:2011
- 资助金额:
$ 28.84万 - 项目类别:
相似国自然基金
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
- 批准号:52308052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
市场公平竞争与企业发展:指标测度、影响机理与效应分析
- 批准号:72373155
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
气候变暖对青藏高原高寒草甸土壤病毒多样性和潜在功能的影响
- 批准号:32301407
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高温胁迫交叉锻炼对梭梭幼苗耐旱性影响的分子机理研究
- 批准号:32360079
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
- 批准号:
10633905 - 财政年份:2023
- 资助金额:
$ 28.84万 - 项目类别:
Competitive Bidding in Medicare and the Implications for Home Oxygen Therapy in COPD
医疗保险竞争性招标以及对慢性阻塞性肺病家庭氧疗的影响
- 批准号:
10641360 - 财政年份:2023
- 资助金额:
$ 28.84万 - 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 28.84万 - 项目类别:
Modeling seizures in patients with focal epilepsy
局灶性癫痫患者的癫痫发作建模
- 批准号:
10716792 - 财政年份:2023
- 资助金额:
$ 28.84万 - 项目类别:
Differences in Tumor Biology of Multiple Myeloma in Association with African Ancestry
与非洲血统相关的多发性骨髓瘤肿瘤生物学差异
- 批准号:
10656009 - 财政年份:2023
- 资助金额:
$ 28.84万 - 项目类别: