Molecular understanding of cytokine-Ras signals in leukemic bone marrow
白血病骨髓中细胞因子-Ras 信号的分子理解
基本信息
- 批准号:9296107
- 负责人:
- 金额:$ 35.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:Acute T Cell LeukemiaAddressAdultAffectBasic ScienceBiochemicalBiochemical PathwayBiochemistryBiologicalBiological AssayBone MarrowBone Marrow CellsBuffersCRISPR/Cas technologyCalciumCell LineCellsCharacteristicsChildChildhood Precursor T Lymphoblastic LeukemiaClinicalCytokine ReceptorsDevelopmentDiglyceridesDiseaseEquilibriumFRAP1 geneFutureGTP BindingGeneticGoalsGrowthGuanine Nucleotide Exchange FactorsGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesHematopoieticHumanInterventionKRAS2 geneLeukemic CellLinkLymphocyteMEKsMalignant NeoplasmsMeasuresMethodsMissionModelingModernizationMolecularMusMutationMyelogenousNF1 geneNude MiceOncogenicOutcomePathogenesisPathway interactionsPatientsPharmaceutical PreparationsPhospholipase CPhospholipases APhosphotransferasesPositioning AttributeReceptor SignalingRelapseReportingResearchResearch PersonnelRestRoleSamplingSignal PathwaySignal TransductionSignal Transduction InhibitorStem cellsStructureStudy modelsSystemT-Cell LeukemiaT-LymphocyteTestingTherapeuticTherapeutic EffectTransplantationUnited States National Institutes of Healthbasebiochemical modelchemotherapycytokinecytotoxicityhyperactive Rasimprovedin vivoinhibitor/antagonistinnovationinsightinterestmolecular targeted therapiesmouse modelnoveloverexpressionphospholipase C gammapre-clinicalpreclinical trialpublic health relevanceras Guanine Nucleotide Exchange Factorsrelapse risksmall hairpin RNAsmall molecule inhibitortargeted treatmenttooltreatment strategy
项目摘要
DESCRIPTION (provided by applicant): T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that affects children and adults. Modern chemotherapy has improved clinical outcome but relapse and non-specific cytotoxicity are still problematic. Targeted therapy with specific inhibitors is highly desired but a better understanding of the aberrant biochemical pathways and pivotal molecules herein is required to reach this goal. ~50% of patient T-ALL patients show aberrantly active Ras signals. Until recently, the molecular players were unknown. We uncovered that T-ALL have two major mechanisms of abnormal Ras signaling: via overexpression of the Ras exchange factor Rasgrp1 or via oncogenic mutations in Ras (like K-RasG12D). Rasgrp1 overexpression occurs in ~55% of all pediatric T-ALL patients, mutations in KRAS in ~10%. We uncovered that Rasgrp1 continuously activates Ras that this is somehow counterbalanced by RasGAPs, and that cytokine receptor stimulation tips the balance in favor of active Ras. In 2013 we also reported (i) that myeloid leukemic cells with mutations in KRAS require Rasgrp3 and (ii) that Rasgrp molecules are autoinhibited and require 2nd messengers produced by Phospholipase C(PLC) for activation. In summary, these findings imply that Rasgrp's are critical components of leukemogenic Ras signals, are positioned downstream of cytokine receptor signaling, depend on PLCfor their activation, and are counterbalanced by RasGAPs. The mechanism of cytokine-Ras signaling, the molecular roles of RasGAPs, Rasgrp's, and PLCherein, and the potential therapeutic effect of PLCinhibiton in T-ALL are all unknowns. We obtained novel mechanistic insights through the development of innovative tools. We optimized a novel Ras activation assay to measure flux in the Ras GDP/GTP cycle that suggests critical buffering by RasGAPs. We optimized a quantitative, high-throughput method of phospho-flow combined with barcoding and a novel pINDUCER system for Dox-indicible shRNA. We established growth characteristics of Rasgrp1 and K-RasG12D T-ALL transplanted into nude mice. We can analyze primary patient T-ALL transplanted into recipient mice. Lastly, we developed an entirely novel genetic mouse model with overexpression of Rasgrp1 in bone marrow cells that leads to T-ALL and will compare this model to a genetic K-RasG12D model. Our biochemical-, cell biological-, and in vivo- approaches will reveal molecular insights into this novel but uncharacterized cytokine receptor-Rasgrp signaling pathway that is counterbalanced by RasGAP Ras inactivators (Aim 1) and will establish the molecular role of PLCin Rasgrp-Ras-Ras effector activation (Aim 2). In Aim 3, we will explore
PLCinhibition using pINDUCER or small molecule inhibitors in preclinical trials in the three above-mentioned mouse models. We anticipate that our studies will provide significant molecular insights into the basic science of leukemogenic signals but also provide translational insights in the therapeutic potential of PLCinhibition that could impact clinical therapy forT-ALL in the future.
描述(由适用提供):T细胞急性淋巴细胞白血病(T-All)是一种影响儿童和成人的侵略性癌症。现代化学疗法改善了临床结局,但是继电器和非特异性细胞毒性仍然有问题。具有特定抑制剂的靶向疗法是高度期望的,但需要更好地理解此处的异常生化途径和关键分子才能实现此目标。约50%的患者T-ALL患者表现出异常活跃的RAS信号。直到最近,分子玩家还不知道。我们发现T-All具有两个主要的RAS信号传导的主要机制:通过RAS交换因子RasGRP1的过表达或通过RAS中的致癌突变(例如K-Rasg12d)。 RASGRP1过表达发生在所有儿科T-ALL患者中约55%,KRAS中的突变约为10%。我们发现RASGRP1不断激活Ras,这是Rasgaps以某种方式平衡的,并且细胞因子受体刺激使平衡取决于有利于活性RA的平衡。 2013年,我们还报道了(i),KRAS中具有突变的髓样白血病细胞需要RasgRP3和(ii)(ii),RasGRP分子被自抑制,并且需要由磷脂酶C(PLC)产生的第二个使者进行活化。总而言之,这些发现表明RASGRP是白血病RAS信号的关键组成部分,将细胞因子受体信号的下游定位,取决于PLC的激活,并由Rasgaps平衡。细胞因子-RAS信号传导的机制,rasgaps,rasgrp和plchere的分子作用以及plc的潜在治疗作用在T-ALL中都是未知的。我们通过开发创新工具获得了新颖的机械见解。我们优化了一种新型的RAS激活测定法,以测量RAS GDP/GTP循环中的通量,该循环表明Rasgaps的临界缓冲。我们优化了一种磷酸流的定量,高通量方法,结合了条形码和用于DOX引人注目的SHRNA的新型Pinducer系统。 We established growth characteristics of Rasgrp1 and K-RasG12D T-ALL transplanted into nude mice.我们可以分析原发性患者T-HALL移植到受体小鼠中。最后,我们开发了一种完全新颖的遗传小鼠模型,在骨髓细胞中用RASGRP1过表达,这将导致T-All,并将该模型与遗传K-RASG12D模型进行比较。我们的生化,细胞生物学和体内方法将揭示对这种新颖但未表征的细胞因子受体-RASGRP信号传导途径的分子见解,而Rasgap ras Inactivator则(AIM 1)平衡了(AIM 1),并将建立PLCGRP-RAS-RAS-RAS-RAS-RAS-RAS-RAS-RAS-RAS-RAS-RAS-RAS-RAS-RAS-RAS RAS RAS效应的分子作用(AIM 1)。在AIM 3中,我们将探索
plc在三种上述小鼠模型中使用pinducer或小分子抑制剂的抑制作用。我们预计,我们的研究将为白血病信号的基础科学提供重要的分子见解,但也为PLC抑制作用的治疗潜力提供了转化见解,这可能会影响临床治疗的未来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEROEN ROOSE其他文献
JEROEN ROOSE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEROEN ROOSE', 18)}}的其他基金
Molecular understanding of cytokine-Ras signals in leukemic bone marrow
白血病骨髓中细胞因子-Ras 信号的分子理解
- 批准号:
9103012 - 财政年份:2015
- 资助金额:
$ 35.38万 - 项目类别:
Molecular understanding of leukemic bone marrow cytokine-Ras signals and metabolic dependence
白血病骨髓细胞因子-Ras 信号和代谢依赖性的分子理解
- 批准号:
10545014 - 财政年份:2015
- 资助金额:
$ 35.38万 - 项目类别:
Molecular understanding of leukemic bone marrow cytokine-Ras signals and metabolic dependence
白血病骨髓细胞因子-Ras 信号和代谢依赖性的分子理解
- 批准号:
10363571 - 财政年份:2015
- 资助金额:
$ 35.38万 - 项目类别:
Loss of Intrinsic Control in Autoimmune T Helper Cells with Signaling Variants
具有信号变异的自身免疫 T 辅助细胞失去内在控制
- 批准号:
10396864 - 财政年份:2014
- 资助金额:
$ 35.38万 - 项目类别:
Loss of Intrinsic Control in Autoimmune T Helper Cells with Signaling Variants
具有信号变异的自身免疫 T 辅助细胞失去内在控制
- 批准号:
8696061 - 财政年份:2014
- 资助金额:
$ 35.38万 - 项目类别:
Loss of Intrinsic Control in Autoimmune T Helper Cells with Signaling Variants
具有信号变异的自身免疫 T 辅助细胞失去内在控制
- 批准号:
9237188 - 财政年份:2014
- 资助金额:
$ 35.38万 - 项目类别:
Loss of Intrinsic Control in Autoimmune T Helper Cells with Signaling Variants
具有信号变异的自身免疫 T 辅助细胞失去内在控制
- 批准号:
8810642 - 财政年份:2014
- 资助金额:
$ 35.38万 - 项目类别:
Non-linear transduction of TCR signals leading to Ras activation
TCR 信号的非线性转导导致 Ras 激活
- 批准号:
8503586 - 财政年份:2013
- 资助金额:
$ 35.38万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
The developmental pathway of fetal-derived B cells
胎儿来源的 B 细胞的发育途径
- 批准号:
10735381 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Investigating the role of the Ccr4-Not complex in regulating codon optimality-mediated mRNA decay
研究 Ccr4-Not 复合体在调节密码子最优性介导的 mRNA 衰减中的作用
- 批准号:
10749985 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Molecular Pathogenesis of AF10-Rearranged Leukemias
AF10 重排白血病的分子发病机制
- 批准号:
10609055 - 财政年份:2022
- 资助金额:
$ 35.38万 - 项目类别:
New control of oncogene activation in T-cell leukemia
T细胞白血病癌基因激活的新控制
- 批准号:
10609073 - 财政年份:2022
- 资助金额:
$ 35.38万 - 项目类别: