Mechanism and therapeutic application of RNA-guided immune systems
RNA引导的免疫系统的机制和治疗应用
基本信息
- 批准号:9306142
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAnimal ModelAnimalsAwardBacterial RNABasic ScienceBindingBiochemicalBiochemistryBiogenesisBiologicalBiological AssayBiological SciencesBiologyBiomedical ResearchBiophysicsCRISPR/Cas technologyCaliforniaCell Culture TechniquesCellsCellular biologyChemicalsClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComplexComputer SimulationCrystallizationDNADataData AnalysesDevelopmentDiseaseDouble-Stranded RNAEngineeringEnvironmentEnzymesEquipmentEukaryotic CellFacultyFluorescenceFoundationsFutureGene SilencingGenesGenomeGenome engineeringGenomicsGoalsGrantGuide RNAHalf-LifeHereditary DiseaseHigh-Throughput Nucleotide SequencingHomeostasisHumanImmune systemImmunityInstitutesInstitutionKnowledgeLaboratoriesLaboratory ResearchLeadLearningLibrariesMalignant NeoplasmsMammalian CellMediatingMedicalMedicineMentorsMethodsMicroRNAsModalityModificationMolecularMutationNonhomologous DNA End JoiningOrganismPatientsPhasePlantsPositioning AttributeRNARNA InterferenceRNA PhagesResearchResearch PersonnelResourcesRibonucleoproteinsSafetyScienceScientistSecureSerumSmall Interfering RNASpeedStreptococcus pyogenesStructureStudentsSystemTalentsTechnologyTestingTherapeuticTherapeutic UsesTrainingVariantVertebral columnViral VectorWorkbasecareercombinatorialdeep sequencingdesigndrug discoveryds-DNAendonucleaseenzyme mechanismgenome editinghuman diseasein vivoin vivo Modelinnovationinsightmembermultidisciplinarymutantnext generationnovelphysical sciencepublic health relevancerepairedrestriction enzymerole modelsensorskillssmall hairpin RNAstructural biologytargeted treatmenttenure tracktherapeutic targettooltranscriptometranslational approachtumorigenesis
项目摘要
DESCRIPTION (provided by applicant): Genome engineering using the bacterial RNA-guided CRISPR-Cas9 immune system in animals and plants is transforming biology. Efforts from its discovery through the elucidation of the enzyme mechanism are providing the foundation for remarkable developments to modify, regulate or mark genomic loci in a wide variety of cells and organisms. CRISPR-Cas9 gene editing has the potential to transform medicine by providing innovative ways to probe biology and treat genetic disorders in adults. The key goals of the proposed project are: 1) to train in the new fields of biochemistry and structural biology (K99 phase), 2) to characterize and develop novel Cas9 variants for biomedical applications (K99/R00 phase), and 3) to establish a successful, independent research laboratory at a leading academic institution (R00 phase). My laboratory will be focused on mechanism and therapeutic application of RNA-guided immune systems, to address the urgent medical need for new platform technologies to establish diverse therapeutic targets and develop innovative treatment modalities, and to mentor the next generation of scientists. Candidate: I am committed to an academic career in biomedical research. My long-term goals are to secure a tenure-track faculty position at a leading academic institution and successfully establish an independent research laboratory. My work focuses on mechanism and therapeutic application of RNA-guided immune systems. My multidisciplinary training in molecular cell biology and in-vivo models of human disease, combined with the new biochemical and structural approaches learned during the K99 mentored phase, will allow me to bridge basic science and patient-focused research. In turn, this will allow me to help accelerate translational approaches and develop novel treatment paradigms for genetic disorders. Importantly, I am committed to mentor the next generation of students and serve as a role model to help transform talented young scientist into successful faculty members. Environment: The mentored phase (K99) will be carried out in the laboratory of Dr. Jennifer A. Doudna at UC Berkeley, a highly interactive and vibrant research environment, to learn new skills in biochemistry and structural biology. The Doudna Laboratory is located at Stanley Hall, which serves as the UC Berkeley hub for the California Institute for Quantitative Bioscience (QB3). The Doudna lab has many multidisciplinary interactions with the more than 200 researchers that are part of QB3, involving the the biological sciences, chemical sciences, physical sciences and engineering. These collaborations result in enhanced access to cutting-edge expertise in biochemistry, structural biology, biophysics, computational modeling, high-throughput sequencing and large-scale data analysis. I will benefit from this vast resource of talent and knowledge, as well as access to the specialized equipment needed to carry out the proposed research. Importantly, Dr. Doudna is a leading expert in biochemistry and structural biology, and a pioneer of the CRISPR-Cas9 genome editing technology. Research: CRISPR-Cas9 gene editing has the potential to enhance medicine by providing innovative ways to probe biology and treat genetic disorders in adult patients. The goal of this project is to define mechanisms and establish novel Cas9 variants for efficient CRISPR-Cas9 mediated genome editing in vivo. To this end, we will combine computational, biochemical and high-throughput cell-based approaches. The Specific Aims of this proposal are: Aim 1) to characterize novel Cas9 endonucleases, and Aim 2) to establish a DNA-guided CRISPR system for efficient in-vivo genome editing. Completion of the proposed project will result in new platform technologies and applications for efficient CRISPR-based gene editing, to meet the urgent medical need for new tools to accelerate drug discovery and develop innovative treatment modalities. 1) Newly defined Cas9 enzymes will yield orthogonal CRISPR systems that can be used in parallel for multiplexed genome editing. These tools will allow probing biology with unprecedented precision and speed, and expand our understanding of homeostasis and disease. In turn, this will lead to better treatments for patients. Additionally, ssDNA or ss/dsRNA targeting Cas9s may lead to new methods to assess genomes/transcriptomes and can provide novel insight into the mechanisms of bacterial immunity. 2) The DNA-guided Cas9 version will facilitate therapeutic applications by overcoming the bottleneck of sgRNA instability in serum, and constitute the basis for the development of innovative CRISPR-based strategies to treat genetic disorders. Importantly, the methods learned and data generated during the mentored phase of the award (K99) will provide me with the foundation for future projects and grants (R00 and beyond). Together with my expertise in cell biology and animal modeling, this will allow me to successfully establish an independent laboratory at a leading academic research institution.
描述(通过应用程序):在动物中使用Bactterial RNA引导的CRISPR-CAS9免疫系统正在转变探针生物学和治疗成人的遗传疾病。领先的学术研究所的研究实验室(R00阶段)。致力于生物医学研究的学术生涯。阶段,我可以桥接基础科学,这将使转化方法加速,并为遗传疾病开发新的治疗范式。 K99将在Trearch环境的实验室中进行,以学习生物化学和结构生物学的新技能ITH涉及QB3一部分的200多名研究人员,涉及生物科学,化学科学,物理科学和工程THYSE协作,从而增强了对生物化学Hysys,计算建模,高通量测序和大规模数据分析分析的削减专业知识的访问NOWLEDY,以及对ND结构生物学的访问,以及CRISPR-CAS9基因组编辑技术的先驱。成年患者的遗传疾病是定义机制,并建立有效的CRISPR-CAS9介导的基因组在体内介导的。 ZE的方法。加速和发展创新的工具。 ,SSD,SSD。在血清中,基于CRISPR的创新策略的发展是在奖励阶段产生的数据(K99)学术研究所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christof Fellmann其他文献
Christof Fellmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christof Fellmann', 18)}}的其他基金
Mapping cellular communication at single-cell resolution through novel CRISPR systems
通过新型 CRISPR 系统以单细胞分辨率绘制细胞通讯图
- 批准号:
10277350 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
- 批准号:
10639073 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
- 批准号:
10679988 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别: