Mapping cellular communication at single-cell resolution through novel CRISPR systems
通过新型 CRISPR 系统以单细胞分辨率绘制细胞通讯图
基本信息
- 批准号:10277350
- 负责人:
- 金额:$ 47.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-18 至 2022-08-21
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelBiologicalBiologyCaliforniaCardiac MyocytesCellsClustered Regularly Interspaced Short Palindromic RepeatsCommunicationCommunitiesDNA Polymerase IIDNA Polymerase IIIDNA Repair PathwayDataDevelopmentDiseaseDisease ProgressionEnzymesEventFour-dimensionalGenomeGoalsGuide RNAHealthHeterogeneityHumanImmune systemIn VitroIndividualLabelLaboratoriesMammalian CellMapsMentorsMethodologyMethodsMolecularMonitorOutputPathway interactionsPatientsPeptide HydrolasesRNARNA InterferenceRNA Polymerase IIRecording of previous eventsResearchResolutionRestSARS-CoV-2 infectionScientistSignal TransductionSystemTalentsTimeTissuesTrainingTranslatingUniversitiesViralViral PhysiologyVirus Diseasesbaseexperiencefunctional genomicsgenome editinghuman diseasehuman modelin vivoinnovationinsightmultidisciplinarynext generationnovelnovel strategiesnovel therapeutic interventionpathogenpatient orientedprecision medicinepromoterresponserole modeltranscription factor
项目摘要
Project Summary/Abstract
Mapping cellular communication at single-cell resolution through novel CRISPR systems
The Fellmann lab focuses on decoding principles of cellular signaling in disease progression and therapy, and
pioneering of CRISPR-Cas and RNA interference (RNAi) systems. For over a decade, my research has centered
on better understanding RNA-guided immune systems and establishing innovative strategies to dissect disease,
many of which have found broad application among the scientific community. My lab currently studies the
interplay between Cas enzymes and DNA repair pathways to develop novel approaches for genome editing and
precision medicine. We apply these quantitative, high-throughput methods to study the plasticity of signaling
networks in health and disease, with the goal of translating insights into breakthrough therapies for patients.
A persisting challenge in biology is recording molecular information in a cell-specific manner without disrupting
the system under study. To overcome this, we propose transformative CRISPR platforms to track host-pathogen
interactions and map pathway deregulation in human disease. The approaches rest on the development of Cas9
and guide RNA systems that are responsive to 1) pathogen-specific proteases (“ProCas9s”) or 2) mammalian
cell-signaling events (“CRISPR-capture”), thereby enabling the recording of a cell’s history by inscribing marks
at predetermined loci in the genome. As rapid response to emerging viral threats, we will develop a ProCas9
that can autonomously record SARS-CoV-2 infections and label respective cells. We will use this strategy to
dissect long-term consequences of viral infection in cardiomyocytes. To enable general mapping of cellular
communication, we propose a novel data recording methodology termed CRISPR-capture that places the
expression of sgRNAs under the control of RNA polymerase II promoters, rather than the conventionally used
RNA Pol-III promoters. Since mammalian signaling outputs are largely based on transcription factors regulating
Pol-II promoters, CRISPR-capture tunes Cas activity to a cell’s state, providing the unique ability to map cellular
signaling at single-cell resolution and monitor key biological events over the lifetime of a cell for the first time.
Ultimately, we will leverage CRISPR-capture to monitor individual cells in four dimensions (space-time) during
disease progression and treatment, to uncover organizational principles of tissue heterogeneity and establish
new therapeutic strategies for patients. My multidisciplinary training in genome editing with Dr. Jennifer Doudna
(University of California, Berkeley), functional genomics with Dr. Scott Lowe (Cold Spring Harbor Laboratory),
and in-vivo animal models of human disease, allows me to bridge fundamental biology and patient-centered
research. Moreover, my experience as co-founder and Chief Scientific Officer of a successful start-up company
taught me invaluable lessons that will serve me well in directing and completing the proposed studies.
Importantly, I am deeply committed to mentoring and serving as a role model for a talented and diverse group of
next-generation scientists, and to providing equal opportunities to all.
项目摘要/摘要
通过新颖的cristems绘制单细胞分辨率的蜂窝通信
Fellmann实验室的重点是疾病进度和治疗中细胞信号传导的解码原理
CRISPR-CAS和RNA干扰(RNAi)系统的开创性。
更好地了解RNA引导的免疫系统并建立策略抛弃疾病,
其中许多人在我的实验室中发现了广泛的应用。
CAS酶与DNA修复途径之间的相互作用,以开发用于基因组编辑和
精密医学。
健康和疾病的网络,目的是转化为患者的突破疗法。
生物学中的一项挑战是以细胞特异性的方式记录分子信息
正在研究的系统。
人类疾病中的相互作用和地图途径取决于CAS9的发展
并引导对1)病原体特异性蛋白酶(“ Procas9s”)或2)哺乳动物的RNA系统
细胞信号事件(“ CRISPRAPTURE”),从而通过刻上痕迹来录制细胞的历史记录
在基因组中的预定基因座对新兴病毒威胁的迅速反应
可以自主记录SARS-COV-2的无限件事,并将其标记为各个细胞。
剖析心肌细胞中病毒感染的长期后果。
沟通,我们提出了一种新的数据记录方法,称为CRISPR捕获,将其置于您
在RNA聚合酶II启动子的控制下SGRNA的表达,而不是使用的常规使用
RNA pol-iii启动子。
POL-II启动子,CRISPRAPTURE曲调CAS CAS CAS活动至
第一次在单细胞分辨率和单细胞分辨率的信号传导。
最终,我们将利用CRISPR捕获来监视在四个维度(时空)的单个单元
疾病进步和信任,以发现组织异质性的组织原理
我的新的治疗策略。
(加利福尼亚大学伯克利分校),与斯科特·洛(Scott Lowe)博士(冷泉港实验室)的功能基因组学,
和体内人类疾病的动物模型,使我能够桥接基本生物学和以患者为中心的生物学
此外,我作为成功公司的联合创始人和首席执行官
教会了我宝贵的课程,这将使我在指导和完成辅助研究方面很好地讲述了我。
重要的是,我非常致力于指导和作为一个壁橱和多样的群体的榜样
下一代科学家,为所有人提供平等的机会。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Targeting the non-coding genome and temozolomide signature enables CRISPR-mediated glioma oncolysis.
- DOI:10.1016/j.celrep.2023.113339
- 发表时间:2023-11-28
- 期刊:
- 影响因子:8.8
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christof Fellmann其他文献
Christof Fellmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christof Fellmann', 18)}}的其他基金
Mechanism and therapeutic application of RNA-guided immune systems
RNA引导的免疫系统的机制和治疗应用
- 批准号:
9306142 - 财政年份:2016
- 资助金额:
$ 47.25万 - 项目类别:
相似国自然基金
Gemykibivirus生物学特性的研究及感染小鼠动物模型的建立
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
新型椎间盘退变动物模型的构建及其应力生物学的机制研究
- 批准号:81874013
- 批准年份:2018
- 资助金额:80.0 万元
- 项目类别:面上项目
多细胞生物(果蝇)组蛋白修饰位点突变动物模型库的建立及相关原位生物学功能研究
- 批准号:31671333
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
基于IL-1、Lipin-1阐释虚寒证及虚热证模型的生物学机制
- 批准号:81673852
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
BACE2活性片段与细胞穿膜肽融合蛋白对APP剪切作用的研究
- 批准号:81600943
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Phase Ib/II study of safety and efficacy of EZH2 inhibitor, tazemetostat, and PD-1 blockade for treatment of advanced non-small cell lung cancer
EZH2 抑制剂、他泽美司他和 PD-1 阻断治疗晚期非小细胞肺癌的安全性和有效性的 Ib/II 期研究
- 批准号:
10481965 - 财政年份:2024
- 资助金额:
$ 47.25万 - 项目类别:
Role of biological resilience pathways in longevity and neuroprotection
生物弹性途径在长寿和神经保护中的作用
- 批准号:
494770 - 财政年份:2023
- 资助金额:
$ 47.25万 - 项目类别:
Operating Grants
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 47.25万 - 项目类别:
Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
- 批准号:
10556475 - 财政年份:2023
- 资助金额:
$ 47.25万 - 项目类别:
Molecular Mechanisms of TRIB1 Regulation of Hepatic Metabolism
TRIB1调节肝脏代谢的分子机制
- 批准号:
10660520 - 财政年份:2023
- 资助金额:
$ 47.25万 - 项目类别: