Getting More from Less: Multi-omic Capture and Analysis from Patient Samples

事半功倍:从患者样本中进行多组学捕获和分析

基本信息

  • 批准号:
    9140592
  • 负责人:
  • 金额:
    $ 24.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2017-08-14
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Personalized medicine is predicated on having sufficient patient specific information to provide a diagnosis specific to that patient. Genomics (e.g. next generation sequencing) is now being adopted into clinical practice and is enabling improvements in patient specific care particularly in cancer. However, sequence information alone will not be sufficient to realize the full potential of personalized medicine. If we examine prostate cancer, more than half of patients do not benefit from new anti-cancer therapies such as Abiraterone and Enzalutamide and nearly all patients who initially benefit develop resistance within 1-2 years. Yet, for the clinician the treatment decisions are largely guesswork as he/she has little quantitative mechanistic data to guide treatment choices. Importantly, prostate cancer is driven in large part by the Androgen Receptor (AR) including ligand binding and translocation from the cytoplasm to the nucleus activating a transcriptional program critical to tumorigenesis. Multiple drugs are currently available that prevent nuclear translocation of the AR via different mechanisms, but sequencing alone will be insufficient to accurately guide therapy choice and to monitor the development of resistance (similar scenarios exist in other cancers and other diseases). Predicting and monitoring targeted therapies requires orthogonal multi-omic (i.e., protein, genomic, gene expression) endpoints. Circulating tumor cells (CTCs) have great potential as an accessible sample and many technologies are being developed for CTC analysis, but none have the ability to perform multi-omic analysis from a single sample. This proposal addresses these issues by leveraging and advancing Exclusion-based Sample Preparation (ESP) to enable the rapid and efficient isolation of multiple analytes (cells, proteins RNA, DNA) from a single precious sample with high recovery and purity. To efficiently move this platform into the clinic, we have signed licensing agreements with Gilson and Foundation Medicine (recently acquired by Roche) industry leaders in instrumentation/manufacturing, and advanced cancer diagnostics/clinical laboratory test development respectively. Additionally our clinical collaborator, Dr. Lang (University of Wisconsin), will enable us to directly demonstrate the clinical efficacy of our multi-omic approach during the SBIR proposal period, using advanced prostate cancer as a clinical model. As illustrated by the AR model system, assays capable of measuring multi-omic biomarkers would enable clinicians to make more informed decisions about what type of therapy to use and when to use it for patients with progressive disease, informing both choice of initial treatment as well as when to switch therapy as resistance occurs. We have chosen to submit a Fast-Track SBIR Proposal and have addressed the Fast-Track requirements of clear Phase I goals and clear evidence (e.g. letters) of additional funding & resource commitments that significantly enhance the likelihood of successful commercialization.
 描述(由申请人提供):个性化医疗的前提是拥有足够的患者特定信息,以提供针对该患者的特定诊断。基因组学(例如下一代测序)现已被应用于临床实践,并能够改善患者的特定护理,特别是在医疗领域。然而,仅序列信息不足以实现个性化医疗的全部潜力,如果我们检查前列腺癌,超过一半的患者不会从阿比特龙和恩杂鲁胺等新的抗癌疗法中受益。几乎所有最初受益的患者都会在 1-2 年内出现耐药性,然而,对于临床医生来说,治疗决策很大程度上是猜测,因为他/她几乎没有定量的数据来指导治疗选择。重要的是,前列腺癌在很大程度上是由前列腺癌驱动的。雄激素受体 (AR) 包括配体结合和从细胞质到细胞核的易位,激活对肿瘤发生至关重要的转录程序,目前有多种药物可以通过不同的机制防止 AR 的核易位,但仅靠测序不足以准确指导治疗。选择并监测耐药性的发展(其他癌症和其他疾病中也存在类似情况)需要正交多组学(即蛋白质、基因组、基因表达)终点。作为一种可获取的样品,许多技术正在开发用于 CTC 分析,但没有一种技术能够从单个样品中进行多组学分析。该提案通过利用和推进基于排除的样品制备 (ESP) 来解决这些问题。为了能够以高回收率和纯度从单个珍贵样品中快速有效地分离多种分析物(细胞、蛋白质、RNA、DNA),为了有效地将这个平台推向临床,我们与 Gilson 和 Foundation Medicine 签署了许可协议(最近)。分别是仪器/制造和先进癌症诊断/临床实验室测试开发领域的行业领导者,我们的临床合作者 Lang 博士(威斯康星大学)将使我们能够直接证明我们的多组学的临床功效。期间接近SBIR 提案期间,使用晚期前列腺癌作为临床模型,如 AR 模型系统所示,能够测量多组学生物标志物的测定将使老年人能够就使用哪种类型的治疗以及何时使用做出更明智的决定。对于病情进展的患者,告知初始治疗的选择以及出现耐药性时何时转换治疗。我们选择提交快速通道 SBIR 提案,并解决了明确的 I 期目标和明确证据的快速通道要求。 (例如字母)额外的资金和资源承诺,可显着提高成功商业化的可能性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott M Berry其他文献

Scott M Berry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott M Berry', 18)}}的其他基金

Wastewater Assessment for Coronavirus in Kentucky: Implementing Enhanced Surveillance Technology
肯塔基州冠状病毒废水评估:实施强化监测技术
  • 批准号:
    10320997
  • 财政年份:
    2021
  • 资助金额:
    $ 24.07万
  • 项目类别:
Wastewater Assessment for Coronavirus in Kentucky: Implementing Enhanced Surveillance Technology
肯塔基州冠状病毒废水评估:实施强化监测技术
  • 批准号:
    10264317
  • 财政年份:
    2021
  • 资助金额:
    $ 24.07万
  • 项目类别:
The Dual Reporter Sensor Cell (DRSC) Assay: An Enhanced Tool for Measuring the Viral Reservoir
双报告传感器细胞 (DRSC) 检测:测量病毒库的增强工具
  • 批准号:
    10254314
  • 财政年份:
    2020
  • 资助金额:
    $ 24.07万
  • 项目类别:
Enhancing Pediatric Diagnosis of Tuberculosis with FLOW Technology
利用 FLOW 技术增强儿科结核病诊断
  • 批准号:
    9907972
  • 财政年份:
    2020
  • 资助金额:
    $ 24.07万
  • 项目类别:
The Dual Reporter Sensor Cell (DRSC) Assay: An Enhanced Tool for Measuring the Viral Reservoir
双报告传感器细胞 (DRSC) 检测:测量病毒库的增强工具
  • 批准号:
    10079343
  • 财政年份:
    2020
  • 资助金额:
    $ 24.07万
  • 项目类别:
Getting More from Less: Multi-omic Capture and Analysis from Patient Samples
事半功倍:从患者样本中进行多组学捕获和分析
  • 批准号:
    9545010
  • 财政年份:
    2016
  • 资助金额:
    $ 24.07万
  • 项目类别:
VERSA: An Integrated, Multi-Endpoint Platform for Circulating Tumor Cell Analysis
VERSA:用于循环肿瘤细胞分析的集成多端点平台
  • 批准号:
    9228340
  • 财政年份:
    2014
  • 资助金额:
    $ 24.07万
  • 项目类别:
VERSA: An Integrated, Multi-Endpoint Platform for Circulating Tumor Cell Analysis
VERSA:用于循环肿瘤细胞分析的集成多端点平台
  • 批准号:
    8720248
  • 财政年份:
    2014
  • 资助金额:
    $ 24.07万
  • 项目类别:

相似国自然基金

锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
  • 批准号:
    82301139
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
  • 批准号:
    32302787
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
  • 批准号:
    32330098
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
  • 批准号:
    32303021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
  • 批准号:
    82373030
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

A Multi-Institute Survivorship Study of Patients Living with Advanced Cancer Who Have Had Durable Response to Immune Checkpoint Inhibitors
对免疫检查点抑制剂有持久反应的晚期癌症患者的多机构生存研究
  • 批准号:
    10714336
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
  • 批准号:
    10663642
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
Outreach Core
外展核心
  • 批准号:
    10762149
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
Creatine supplementation and resistance training to preserve muscle mass and attenuate cancer progression: A double-blind randomized controlled trial
肌酸补充剂和阻力训练可保持肌肉质量并减缓癌症进展:一项双盲随机对照试验
  • 批准号:
    10712432
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
Next Generation Sequencing Shared Resource
下一代测序共享资源
  • 批准号:
    10625767
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了