Novel methods for identifying genetic interactions in cancer prognosis

识别癌症预后中遗传相互作用的新方法

基本信息

  • 批准号:
    9079917
  • 负责人:
  • 金额:
    $ 38.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Project Summary In cancer prognosis, beyond the main effects of environmental/clinical (E) and genetic (G) risk factors, the interactions between G and E factors (G*E interactions) and those between G and G factors (G*G interactions) also play critical roles. The existing findings are insufficient, and there is a strong need for identifing more prognostic interactions. Most of the existing effort has been focused on data collection. In contrast, the development of effective analysis methods has been lagging behind. Compared to data collection, methodological development takes much less resources but is equally critical in making reliable findings. Most of the existing interaction analysis methods share the limitation of lacking robustness properties. In practice, data contamination and model mis-specification are not uncommon and can lead to severely biased model parameter estimation and false marker identification. The development of robust genetic interaction analysis methods is very limited. There are a few methods for case-control data, but they are not applicable to prognosis data. For prognosis data and interaction analysis, there is some very recent progress in quantile regression and rank-based methods, but the development has been limited and unsystematic. Last but not least, the existing robust methods have the common drawback of adopting ineffective marker selection techniques. Our group has been at the frontier of developing robust interaction analysis methods. Our statistical investigations and simulations have provided convincing evidences that the robust methods using the penalization technique outperform alternatives with significantly more accurate marker identification and model parameter estimation. In data analysis, important interactions missed by the existing analyses have been identified for multiple cancer types. However, we have also found that the scope of the existing studies needs to be significantly expanded in terms of both methodological development and data analysis. This project has been motivated by the importance of interactions in cancer prognosis and limitations of the existing studies. Our objectives are as follows. (Aim 1) Develop novel marginal analysis methods that are robust to data contamination and model mis-specification for identifying important interactions. (Aim 2) Develop novel joint analysis methods that are robust to data contamination and model mis-specification for identifying important interactions. (Aim 3) Develop tailored inference approaches to draw more definitive conclusions on the identified interactions. (Aim 4) Develop public R software and a dynamic project website. Identify prognostic interactions for multiple cancers. For the identified interactions, we will conduct extensive bioinformatic and statistical analysis, evaluations, and comparisons. With our unique expertise, extensive experiences, and promising preliminary studies, this project has a high likelihood of success.
 描述(适用提供):癌症提示中的项目摘要,超出环境/临床(E)和遗传(G)风险因素的主要影响,G和E因素之间的相互作用(G*E相互作用)以及G和G因素(G*G相互作用)之间的相互作用(G*G相互作用)也起着关键作用。现有发现不足,并且非常需要识别更多的预后相互作用。现有的大多数工作都集中在数据收集上。相反,有效分析方法的发展一直落后。与数据收集相比,方法论开发的资源要少得多,但对于做出可靠的发现同样至关重要。大多数现有的相互作用分析方法都具有缺乏鲁棒性能的局限性。实际上,数据污染和模型错误指定并不少见,并且可能导致严重偏见的模型参数估计和错误标记识别。强大的遗传相互作用分析方法的发展非常有限。病例对照数据有几种方法,但它们不适用于预后数据。对于预后数据和相互作用分析,分位数回归和基于等级的方法有一些最新的进展,但是发展是有限且非系统性的。最后但并非最不重要的一点是,现有的鲁棒方法具有采用无效标记选择技术的共同缺点。我们的小组一直在开发强大的相互作用分析方法的前沿。我们的统计研究和模拟提供了令人信服的证据,即使用惩罚技术的鲁棒方法优于替代方案,其标记识别和模型参数估计明显更准确。在数据分析中,已经确定了多种癌症类型的现有分析所错过的重要相互作用。但是,我们还发现,现有研究的范围需要在方法论开发和数据分析方面显着扩大。该项目的激励性是由于相互作用在癌症预后和现有研究的局限性中的重要性所激发的。我们的目标如下。 (AIM 1)开发新型的边缘分析方法,这些方法对数据污染和模型错误指定具有可靠性,以识别重要的相互作用。 (AIM 2)开发新型的联合分析方法,这些方法可用于数据污染和模型错误指定,以识别重要的相互作用。 (AIM 3)开发量身定制的推理方法,以得出有关已确定相互作用的更明确的结论。 (AIM 4)开发公共R软件和动态项目网站。确定多个候选者的原型相互作用。对于确定的相互作用,我们将进行广泛的生物信息学和统计分析,评估和比较。凭借我们独特的专业知识,丰富的经验和有前途的初步研究,该项目的成功可能性很大。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuangge Ma其他文献

Shuangge Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shuangge Ma', 18)}}的其他基金

Cancer Emulation Analysis with Deep Neural Network
使用深度神经网络进行癌症仿真分析
  • 批准号:
    10725293
  • 财政年份:
    2023
  • 资助金额:
    $ 38.28万
  • 项目类别:
Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
  • 批准号:
    10515491
  • 财政年份:
    2022
  • 资助金额:
    $ 38.28万
  • 项目类别:
Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
  • 批准号:
    10676303
  • 财政年份:
    2022
  • 资助金额:
    $ 38.28万
  • 项目类别:
Integrated Cancer Modeling: A New Dimension
综合癌症建模:新维度
  • 批准号:
    9812144
  • 财政年份:
    2019
  • 资助金额:
    $ 38.28万
  • 项目类别:
Assisted Network-based Analysis of Cancer Gene Expression Studies
癌症基因表达研究的辅助网络分析
  • 批准号:
    9306472
  • 财政年份:
    2017
  • 资助金额:
    $ 38.28万
  • 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
  • 批准号:
    10668282
  • 财政年份:
    2016
  • 资助金额:
    $ 38.28万
  • 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
  • 批准号:
    10311368
  • 财政年份:
    2016
  • 资助金额:
    $ 38.28万
  • 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
  • 批准号:
    10451680
  • 财政年份:
    2016
  • 资助金额:
    $ 38.28万
  • 项目类别:
Core B: Biostatistics and Bioinformatics Core
核心 B:生物统计学和生物信息学核心
  • 批准号:
    10203852
  • 财政年份:
    2015
  • 资助金额:
    $ 38.28万
  • 项目类别:
Penalization methods for identifying gene envrionment interactions and applications to melanoma and other cancer types
识别基因环境相互作用的惩罚方法及其在黑色素瘤和其他癌症类型中的应用
  • 批准号:
    9238753
  • 财政年份:
    2014
  • 资助金额:
    $ 38.28万
  • 项目类别:

相似国自然基金

采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
  • 批准号:
    72303205
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
  • 批准号:
    12305261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
  • 批准号:
    62301339
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
  • 批准号:
    72304103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Applying Computational Phenotypes To Assess Mental Health Disorders Among Transgender Patients in the United States
应用计算表型评估美国跨性别患者的心理健康障碍
  • 批准号:
    10604723
  • 财政年份:
    2023
  • 资助金额:
    $ 38.28万
  • 项目类别:
Microenvironmental characterization and manipulation to prevent secondary caries
预防继发龋的微环境特征和操作
  • 批准号:
    10814030
  • 财政年份:
    2023
  • 资助金额:
    $ 38.28万
  • 项目类别:
Crossroads: Using decision making strategies to develop high impact content for training in rigor and transparency.
十字路口:使用决策策略来开发高影响力的内容,以进行严格和透明的培训。
  • 批准号:
    10722510
  • 财政年份:
    2023
  • 资助金额:
    $ 38.28万
  • 项目类别:
Paid Sick Leave Mandates and Mental Healthcare Service Use
带薪病假规定和心理保健服务的使用
  • 批准号:
    10635492
  • 财政年份:
    2023
  • 资助金额:
    $ 38.28万
  • 项目类别:
Annual wellness visit policy: Impact on disparities in early dementia diagnosis and quality of healthcare for Medicare beneficiaries with Alzheimer's Disease and Its Related Dementias
年度健康就诊政策:对患有阿尔茨海默病及其相关痴呆症的医疗保险受益人的早期痴呆诊断和医疗质量差异的影响
  • 批准号:
    10729272
  • 财政年份:
    2023
  • 资助金额:
    $ 38.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了