Conformal islet encapsulation for transplantation at vascularized sites to allow physiological insulin secretion
适形胰岛封装,用于在血管化部位移植,以允许生理性胰岛素分泌
基本信息
- 批准号:9293659
- 负责人:
- 金额:$ 22.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-05 至 2017-12-10
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAmericanAntigensAutoimmune DiseasesBeta CellBiocompatible MaterialsCaliberCessation of lifeChronicClinicalClinical TrialsComputer SimulationDiffusionDoseEncapsulatedEngineeringEngraftmentEquilibriumEthylenesFailureFibrinFluorocarbonsFutureGelGlucoseGraft SurvivalHumanHydrogelsHypoxiaImmuneImmunosuppressionIn VitroInbred NOD MiceInjection of therapeutic agentInsulinInsulin-Dependent Diabetes MellitusIslet CellIslets of LangerhansIslets of Langerhans TransplantationLifeLungMeasuresMechanicsMicrocapsules drug delivery systemModelingMusNecrosisNutrientOligonucleotidesOrgan DonorOutcomeOxygenPatientsPermeabilityPharmaceutical PreparationsPhysiologicalPositioning AttributePre-Clinical ModelShapesSiteSulfidesTechnologyTestingThickTimeTranslationsTransplantationWorkblood glucose regulationcapsulediabeticexperienceimprovedinnovationinsulin secretionintraperitonealisletmouse modelnanocarriernanofibernonhuman primatenoveloxygen transportpre-clinicalpreclinical evaluationpreventresponsescaffoldsuccesstransplantation typing
项目摘要
Islet transplantation for type 1 diabetes (T1D) is experiencing increasing clinical success, but its applicability is
currently limited by the need for chronic immunosuppression the amount of islets needed per recipient and the
transplantation site. Encapsulation may allow addressing many shortcomings but so far traditional 1000 µm
diameter capsules have not been shown effective. Most likely, this is because large capsules limit nutrient
transport leading to loss of functionality and, ultimately, death of the islet graft. Recently, we developed an
encapsulation technology that allows `wrapping' single islets with a thin (up to 10 µm) layer of biomaterial,
generating capsules that `conform' to the islet size and shape. By reducing the diffusion distance 10-fold,
conformal coating (CC) increases nutrient transport to the encapsulated islets. By reducing the graft volume
from ~500 mL to ~3 mL, CC also allows transplantation in vascularized sites - not limited to the intraperitoneal
cavity - further maximizing nutrient transport. Our computational models predict that, contrary to traditional
microcapsules, CC grafts at vascularized sites prevent central necrosis due to hypoxia, and allow physiological
glucose-stimulated insulin release. In mice, we showed prompt T1D reversal and long-term euglycemia after
transplantation of fully MHC-mismatched CC grafts without immunosuppression. Accordingly, we hypothesize
that our unique CC technology can allow long-term function of islet transplantation in preclinical models of T1D
without the need for immunosuppression. Further, we hypothesize that by minimizing capsule thickness and
increasing nutrient transport yet protecting the graft, we can minimize the dose of islets required to reverse
T1D. In Aim 1, we will complete the preclinical evaluation of the basic CC platform and determine the
mechanisms associated with graft success. We will establish the efficacy of CC capsules in maintaining long-
term function without immunosuppression in allo and auto-immune settings (Aim 1.1). We will also establish
the efficacy of CC encapsulation of human islets in preclinical models (Aim 1.2). In parallel, in Aim 2, we will
enhance the translational potential of the CC platform by engineering features that minimize the dose of CC
islets required for T1D reversal. We will achieve the ideal balance between nutrient transport and
immunoisolation by minimizing CC thickness and incorporating nanocarriers of immunomodulatory molecules
(Aim 2.1). We will also increase CC graft revascularization to improve inbound and outbound transport by
using clinically translatable pro-angiogenic scaffolds (Aim 2.2). Finally, we will increase oxygen diffusivity in
CC to enhance islet function by incorporating oxygen nanocarriers. This necessary preclinical work will position
the CC technology for translation and application in future nonhuman primate and clinical trials. If successful,
this technology can significantly impact the field by promoting graft survival, the success rate of islet
transplantation yet reducing the need for islets and immunosuppression.
1型糖尿病(T1D)的胰岛移植正经历临床成功的增加,但适用性是
目前,由于需要慢性免疫选择的需要,每个受体和接收者所需的胰岛数量。
移植地点可能有许多缺点,但到目前为止
直径胶囊尚未显示有效。
运输导致功能丧失,并最终导致胰岛移植物的死亡。
封装技术允许“包装”单胰岛,具有薄(最高10 µm)的生物局部,
通过减小10倍的扩散距离生成“符合胰岛和形状”的胶囊。
共形涂层(CC)通过减少移植体积来增加养分的养分。
从〜500 mL到〜3 mL,CC还允许在血管化位点移植 - 不限于核内
腔 - 最大化营养转运。
微胶囊,脉管化部位的CC移植物可预防缺氧引起的中枢坏死,并允许生理。
葡萄糖刺激的胰岛素释放。
我们假设对完全MHC匹配的CC移植物的移植
我们独特的CC技术可以在T1D的临床前胰岛推理的长期功能
没有下一步
增加养分的运输却保护移植物,我们可以最大程度地减少逆转所需的胰岛剂量
T1D。在AIM 1中,我们将强制对基本CC平台的临床前评估
与移植成功相关的机制。
在Allo和自动免疫设置中具有免疫培训的术语功能(AIM 1.1)。
临床前模型中人类胰岛的CC封装的功效(AIM 1.2)。
通过工程增强CC平台的转化潜力,特征是CC的剂量
T1D逆转所需的胰岛。
通过最小化CC厚度并掺入免疫调节分子的纳米载体来免疫分散
(AIM 2.1)。
使用临床上可翻译的促启动支架(AIM 2.2)。
CC通过掺入氧气纳米载体来增强胰岛功能。
在未来的非人类灵长类动物和临床试验中进行翻译和应用的CC技术。
技术可以通过促进移植生存,伊斯莱特的成功率来显着影响该领域
移植但减少了对胰岛和免疫选择的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alice Tomei其他文献
Alice Tomei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alice Tomei', 18)}}的其他基金
Tissue-engineered lymph node stroma to study peripheral tolerance in autoimmune diabetes
组织工程淋巴结基质研究自身免疫性糖尿病的外周耐受性
- 批准号:
10299866 - 财政年份:2020
- 资助金额:
$ 22.83万 - 项目类别:
Conformal islet encapsulation for transplantation at vascularized sites to allow physiological insulin secretion
适形胰岛封装,用于在血管化部位移植,以允许生理性胰岛素分泌
- 批准号:
10310452 - 财政年份:2017
- 资助金额:
$ 22.83万 - 项目类别:
Conformal islet encapsulation for transplantation at vascularized sites to allow physiological insulin secretion
适形胰岛封装,用于在血管化部位移植,以允许生理性胰岛素分泌
- 批准号:
10062501 - 财政年份:2017
- 资助金额:
$ 22.83万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别:
Rapid measurement of novel harm reduction housing on HIV risk, treatment uptake, drug use and supply
快速测量新型减害住房对艾滋病毒风险、治疗接受情况、毒品使用和供应的影响
- 批准号:
10701309 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别: