Carbon-Carbon Bond Forming Reactions in Via C-H Activation
通过 C-H 活化形成碳-碳键的反应
基本信息
- 批准号:8776717
- 负责人:
- 金额:$ 41.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-01-05 至 2015-11-30
- 项目状态:已结题
- 来源:
- 关键词:AlcoholsAlkenesAlkynesAmidesAminesAzolesBiological FactorsBiologyCarbonCarboxylic AcidsChemicalsChemistryComplexCouplingDevelopmentDihydropyridinesDrug CompoundingFundingGoalsGrantHydrogen BondingImidazoleIminesIn SituIndolesIsocyanatesKetonesMediatingMetalsMethodsNatural Product DrugNitrogenNobel PrizeOutcomeOximesPharmaceutical PreparationsPharmacologic SubstancePreparationProcessProductionPyrazolesReactionReportingResearchTherapeutic AgentsTransition ElementsUnited States National Institutes of HealthUreaVariantamino groupanalogazinebiological systemscostcost effectivedihydropyridinedrug candidatedrug discoverydrug productiondrug synthesisfunctional grouphuman diseaseinnovationmethod developmentnovel strategiespiperidinepyridinesmall moleculetoolwasting
项目摘要
DESCRIPTION (provided by applicant): Carbon-carbon bonds are present in virtually all drugs, bioactive natural products, and chemical tools for the study of biological systems. Consequently, methods for the formation of carbon-carbon bonds are of central importance to the synthesis of bioactive small molecules, with transition metal catalyzed processes such as olefin metathesis (2005 Nobel Prize) and cross coupling (2010 Nobel Prize) having a profound impact due to their high functional group compatibility. Transition metal catalyzed carbon-carbon bond formation via the direct functionalization of C-H bonds has enormous potential to accelerate drug discovery and production by eliminating the need to preactivate starting materials with halide/pseudohalide or organometallic functionality. This dramatically increases the number and variety of available inputs to enable the more efficient preparation of drug analogues necessary for drug discovery and optimization and also reduces the number of steps, cost and waste in drug production. The research funded by the NIH in the current grant cycle resulted in a number of highly significant advances with considerable impact on drug discovery and production, including (1) highly functional group compatible Rh-catalyzed methods for the direct arylation of pharmaceutically important heterocycles, including azoles and azines, for which direct ortho-arylation had not previously been reported, (2) pioneering enantioselective catalytic C-H bond functionalization, and (3) application to the efficient synthesis of complex bioactive natural products. The overall objective of this application is the development of general methods to prepare amine containing compounds through catalytic C-H bond activation and C-C bond formation. Despite the fact that a large majority of drugs contain amine functionality, only very limited examples of amine synthesis through C-H bond functionalization have been reported to date. The central hypothesis is that a broad range of amines can efficiently be prepared by the two complementary transition metal catalyzed approaches defined by the specific aims: (1) Develop efficient and general methods to prepare amine containing compounds by transition metal catalyzed activation of unreactive C-H bonds followed by addition across C-N ? bonds, and (2) Develop efficient and general methods to prepare pharmaceutically important 6-membered nitrogen heterocycles by transition metal catalyzed addition of C-H bonds across alkynes to provide azatrienes that undergo in situ C-N bond formation via electrocyclization. The expected outcomes will be the more rapid and efficient syntheses of drug like amine containing compounds by reducing the need for prefunctionalized starting materials. Because amines are present in a large majority of drugs and drug candidates, considerable positive impacts upon the pace and cost of drug discovery and production are anticipated. The research proposed in this application is innovative because it provides two new approaches for the convergent preparation of amines by C-H bond functionalization that are marked departures from previously reported strategies.
描述(由申请人提供):几乎所有药物,生物活性天然产物和用于研究生物系统研究的化学工具中都存在碳碳键。因此,形成碳碳键的方法对于生物活性小分子的合成至关重要,其过渡金属催化的过程(例如烯烃变为)(2005年诺贝尔奖)和交叉耦合(2010年诺贝尔奖)由于其高功能组的高功能群体而产生了深远的影响。通过C-H键的直接功能化,过渡金属催化的碳 - 碳键形成具有巨大的潜力,可以通过消除具有卤化物/伪荷甲或器官金属功能的启动起始物质来加速药物发现和生产。这大大增加了可用投入的数量和种类,以使能够更有效地制备药物发现和优化所需的药物类似物,并减少药物生产中的步骤,成本和废物的数量。 The research funded by the NIH in the current grant cycle resulted in a number of highly significant advances with considerable impact on drug discovery and production, including (1) highly functional group compatible Rh-catalyzed methods for the direct arylation of pharmaceutically important heterocycles, including azoles and azines, for which direct ortho-arylation had not previously been reported, (2) pioneering enantioselective catalytic C-H bond功能化,(3)应用复杂生物活性天然产物的有效合成。该应用的总体目的是开发通过催化C-H键激活和C-C键形成制备胺的通用方法。尽管大多数药物都包含胺功能,但迄今为止,通过C-H键功能化的胺合成实例非常有限。中心假设是,可以通过特定目的定义的两种互补过渡金属催化的方法有效制备广泛的胺,(1)通过过渡金属催化的不反应C-H键激活含有胺的化合物来制备含有胺的化合物,并添加了C-n?键,以及(2)通过过渡金属催化在炔烃中催化C-H键的添加,以制备具有高效和一般方法,以制备具有强大的6元氮杂环,从而提供了通过电循环化的原位C-N键形成的叠氮化素。预期的结果将是通过减少对预官能化的起始材料的需求,将其更快,有效的药物合成(如胺含有化合物)。由于大部分药物和候选药物中都存在胺,因此预计对药物发现和生产的成本和成本会产生相当大的积极影响。本应用程序中提出的研究具有创新性,因为它为C-H键功能化提供了两种新方法,用于与先前报道的策略相偏离。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN A ELLMAN其他文献
JONATHAN A ELLMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN A ELLMAN', 18)}}的其他基金
Chemistry principles applied to the development of new catalytic C-H bond functionalization methods for amine and heterocycle preparation and to the design, synthesis and use of new enzyme inhibitors
化学原理应用于胺和杂环制备的新型催化C-H键功能化方法的开发以及新型酶抑制剂的设计、合成和使用
- 批准号:
9910428 - 财政年份:2017
- 资助金额:
$ 41.94万 - 项目类别:
Next-generation C-H functionalization methods for organic synthesis and their applications to biological inquiry
下一代有机合成C-H官能化方法及其在生物学研究中的应用
- 批准号:
10797141 - 财政年份:2017
- 资助金额:
$ 41.94万 - 项目类别:
Next-generation C-H functionalization methods for organic synthesis and their applications to biological inquiry
下一代有机合成C-H官能化方法及其在生物学研究中的应用
- 批准号:
10728428 - 财政年份:2017
- 资助金额:
$ 41.94万 - 项目类别:
Next-generation C-H functionalization methods for organic synthesis and their applications to biological inquiry
下一代有机合成C-H官能化方法及其在生物学研究中的应用
- 批准号:
10625618 - 财政年份:2017
- 资助金额:
$ 41.94万 - 项目类别:
Next-generation C-H functionalization methods for organic synthesis and their applications to biological inquiry
下一代有机合成C-H官能化方法及其在生物学研究中的应用
- 批准号:
10602453 - 财政年份:2017
- 资助金额:
$ 41.94万 - 项目类别:
Next-generation C-H functionalization methods for organic synthesis and their applications to biological inquiry
下一代有机合成C-H官能化方法及其在生物学研究中的应用
- 批准号:
10406549 - 财政年份:2017
- 资助金额:
$ 41.94万 - 项目类别:
Substrate Activity Screening: A New Approach to Inhibitor Discovery
底物活性筛选:抑制剂发现的新方法
- 批准号:
7869641 - 财政年份:2009
- 资助金额:
$ 41.94万 - 项目类别:
600 MHz NMR Spectrometer for Solution-state NMR
用于溶液态 NMR 的 600 MHz NMR 波谱仪
- 批准号:
7214940 - 财政年份:2007
- 资助金额:
$ 41.94万 - 项目类别:
Carbon-Carbon Bond-Forming Reactions Via C-H Activation
通过 C-H 活化形成碳-碳键的反应
- 批准号:
6841955 - 财政年份:2004
- 资助金额:
$ 41.94万 - 项目类别:
Carbon-Carbon Bond Forming Reactions Via C-H Activation
通过 C-H 活化形成碳-碳键的反应
- 批准号:
7993103 - 财政年份:2004
- 资助金额:
$ 41.94万 - 项目类别:
相似国自然基金
低价钴-氢催化烯烃/炔烃氢烷基化
- 批准号:22371273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于电化学氧化/碘催化策略下炔烃(烯烃)双官能团化构建Csp2/sp3-Z(O、S、Se、Te、N)键研究
- 批准号:21902014
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
硼催化的烯烃、炔烃氢芳基化反应的理论与实验研究
- 批准号:21903043
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
镍催化炔烃三组分偶联反应构建官能化四碳取代烯烃的研究
- 批准号:21901163
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
模块化成环新方法和环形聚合物结构与性能调控
- 批准号:21871091
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Photoredox-Enabled Applications of Primary Amines as Alkylating Reagents
伯胺作为烷基化试剂的光氧化还原应用
- 批准号:
9760408 - 财政年份:2019
- 资助金额:
$ 41.94万 - 项目类别:
Photoredox-Enabled Applications of Primary Amines as Alkylating Reagents
伯胺作为烷基化试剂的光氧化还原应用
- 批准号:
9978569 - 财政年份:2019
- 资助金额:
$ 41.94万 - 项目类别:
Innovative Tools for Chemical Synthesis: Cyclase-Inspired Catalysis, Shuttle Catalysis, and Tandem Catalysis
化学合成的创新工具:环化酶催化、穿梭催化和串联催化
- 批准号:
10371806 - 财政年份:2018
- 资助金额:
$ 41.94万 - 项目类别:
New methods to prepare 1,4-oxazin-2-ones and applications in the construction of polysubstituted pyridines
1,4-恶嗪-2-酮的制备新方法及其在多取代吡啶构建中的应用
- 批准号:
10794499 - 财政年份:2014
- 资助金额:
$ 41.94万 - 项目类别:
Reductive Coupling Reactions: Trading Organometallic Reagents for Organic Halides
还原偶联反应:用有机金属试剂换取有机卤化物
- 批准号:
8458158 - 财政年份:2011
- 资助金额:
$ 41.94万 - 项目类别: