Mathematical modeling and computer simulation of aortic dissection

主动脉夹层的数学建模和计算机模拟

基本信息

项目摘要

DESCRIPTION (provided by applicant): Management of aortic diseases has progressed dramatically since the first successful, reproducible surgical intervention in 1956; however, while our understanding of the genetic and cellular bases of these diseases has steadily grown, treatment planning still generally relies on simple risk-assessment models and clinical experience. Some pathologies have been successfully replicated in animal models, but results from such studies are not always readily extrapolated to patients. Other pathologies lack any accepted or reproducible animal model. An example is aortic dissection, in which an intimal tear in the aortic wall propagates into the media to form a false lumen within the vessel wall. Surgical treatment for aortic dissection consists of either replacement of a portion of the aorta or endovascular stent implantation to cover the affected segment. Both approaches carry significant risks, and determining the optimal choice and timing of an intervention is challenging. While aortic dissections can be induced in animal models, such models do not replicate the clinical pathology. Consequently, modeling studies of aortic dissection must use physical or computational models. Existing computational models of aortic dissection use conventional computational fluid dynamics (CFD) approaches, in which the vessel wall and flap are treated as rigid structures. Although CFD models are able to predict wall shear stress distributions, they are unable to account for the interactions between the blood and vascular tis- sues, or for the effects of such interactions on the dynamics of the dissected aorta. This project will develop fluid-structure interaction (FSI) models of both the dissected and dissecting aorta that overcome the limitations of CFD models. These predictive models will be used to perform patient-specific simulations that ultimately will aid in clinical decision making, e.g., selecting optimal medical therapies or surgical interventions. This project will develop two types of FSI models of aortic dissection. The first type of model will use a geometrically parameterized, non-patient-specific model of the vessel and lesion. Such models will be used to study systematically how geometry and driving conditions affect the dynamics of both developing dissections and fully developed lesions. The second type of model will account for the effects of subject-specific anatomy by using realistic patient anatomical geometries derived from computed tomography (CT) and/or magnetic resonance (MR) imaging studies. To characterize the mechanical response and the damage and failure characteristics of human aortic tissue, experimental tests will be performed using tissue samples collected from both normal and diseased human aortas. Data from these tests will be used to develop healthy and disease-specific constitutive models that include innovative models of tissue damage and failure. The impact of these characterizations is not limited to aortic dissection, and this work has potential applications to a range of arterial pathologies, including aneurysmal rupture. Finally, these models will be used to study the surgical and medical management of patients who require or who have undergone partial repair of a Stanford Type A dissection.
描述(由申请人提供):自 1956 年首次成功、可重复的外科手术以来,主动脉疾病的治疗取得了巨大进展;然而,虽然 我们对这些疾病的遗传和细胞基础的了解稳步增长,但治疗计划仍然普遍依赖于简单的风险评估模型和临床经验。一些病理学已在动物模型中成功复制,但此类研究的结果并不总是容易外推到患者身上。其他病理学缺乏任何公认的或可重复的动物模型。一个例子是主动脉夹层,其中主动脉壁的内膜撕裂传播到中膜中,在血管壁内形成假腔。外科 主动脉夹层的治疗包括更换部分主动脉或植入血管内支架以覆盖受影响的部分。这两种方法都存在重大风险,确定干预的最佳选择和时机具有挑战性。虽然可以在动物模型中诱导主动脉夹层,但此类模型不能复制临床病理学。因此,主动脉夹层的建模研究必须使用物理或计算模型。现有的主动脉夹层计算模型使用传统的计算流体动力学(CFD)方法,其中血管壁和瓣被视为刚性结构。尽管 CFD 模型能够预测壁剪切应力分布,但它们无法解释血液和血管组织之间的相互作用,也无法解释这种相互作用对解剖主动脉动力学的影响。该项目将开发解剖主动脉和解剖主动脉的流固耦合 (FSI) 模型,以克服 CFD 模型的局限性。这些预测模型将用于执行针对患者的模拟,最终将有助于临床决策,例如选择最佳的药物治疗或手术干预。 该项目将开发两种类型的主动脉夹层 FSI 模型。第一种类型的模型将使用几何参数化的、非患者特定的血管和病变模型。这些模型将用于系统地研究几何形状和驾驶条件如何影响发育中的夹层和完全发育的病变的动力学。第二种类型的模型将通过使用源自计算机断层扫描 (CT) 和/或磁共振 (MR) 成像研究的真实患者解剖几何形状来解释受试者特定解剖结构的影响。为了表征人类主动脉组织的机械响应以及损伤和失效特征,将使用从正常和患病人类主动脉收集的组织样本进行实验测试。这些测试的数据将用于开发健康和特定疾病的本构模型,其中包括组织损伤和衰竭的创新模型。这些特征的影响不仅限于主动脉夹层,这项工作对一系列动脉病理学有潜在的应用,包括动脉瘤破裂。最后,这些模型将用于研究需要或已经接受斯坦福 A 型解剖部分修复的患者的手术和医疗管理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boyce Eugene Griffith其他文献

Boyce Eugene Griffith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boyce Eugene Griffith', 18)}}的其他基金

Multiscale Modeling of Clotting Risk in Atrial Fibrillation
心房颤动凝血风险的多尺度建模
  • 批准号:
    10458660
  • 财政年份:
    2018
  • 资助金额:
    $ 45.56万
  • 项目类别:
Multiscale Modeling of Clotting Risk in Atrial Fibrillation
心房颤动凝血风险的多尺度建模
  • 批准号:
    10226154
  • 财政年份:
    2018
  • 资助金额:
    $ 45.56万
  • 项目类别:
Mathematical modeling and computer simulation of aortic dissection
主动脉夹层的数学建模和计算机模拟
  • 批准号:
    9268058
  • 财政年份:
    2013
  • 资助金额:
    $ 45.56万
  • 项目类别:
Mathematical modeling and computer simulation of aortic dissection
主动脉夹层的数学建模和计算机模拟
  • 批准号:
    9031871
  • 财政年份:
    2013
  • 资助金额:
    $ 45.56万
  • 项目类别:
Mathematical modeling and computer simulation of aortic dissection
主动脉夹层的数学建模和计算机模拟
  • 批准号:
    8581495
  • 财政年份:
    2013
  • 资助金额:
    $ 45.56万
  • 项目类别:

相似国自然基金

SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
  • 批准号:
    82360025
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
利多卡因通过Nav1.8通道调控白介素31表达影响特应性皮炎急性瘙痒的机制
  • 批准号:
    82373490
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
eIF2α/ATF3通路调控CPT1α影响线粒体稳态在急性肾损伤慢性化中的机制研究
  • 批准号:
    82300838
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超急性期免疫表征影响脑卒中预后研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 45.56万
  • 项目类别:
A rigorous test of dual process model predictions for problematic alcohol involvement
对有问题的酒精参与的双过程模型预测的严格测试
  • 批准号:
    10679252
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
Shifting paradigms to emerging toxins in freshwater cyanobacterial blooms
淡水蓝藻水华中新出现的毒素的范式转变
  • 批准号:
    10912318
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
Detecting Adolescent Suicidality Biometric Signals and Dynamic Variability with Wearable Technology
利用可穿戴技术检测青少年自杀生物特征信号和动态变异性
  • 批准号:
    10731651
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
CSRD Research Career Scientist Award Application
CSRD研究职业科学家奖申请
  • 批准号:
    10701136
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了