Real-time analysis of memories and decisions
实时分析记忆和决策
基本信息
- 批准号:8787330
- 负责人:
- 金额:$ 67.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAlzheimer&aposs DiseaseAnimalsBehavioralBrainBrain regionCellsCognitiveCommunitiesComplexDataDecision MakingDevelopmentDiseaseElementsEnvironmentEpilepsyEventFeedbackFutureGoalsHealthHippocampus (Brain)IndividualInterruptionLaboratoriesLearningLeftLifeLinkMemoryMental DepressionNeuronsNeurosciencesPatternPrefrontal CortexProcessRetrievalRoleSchizophreniaSiteStructureTechnologyTestingTimeWorkawakebasecognitive functionexperienceinformation processinginsightmemory processmemory retrievalneural circuitnew technologynovel strategiesopen sourcerelating to nervous systemresearch study
项目摘要
DESCRIPTION (provided by applicant): The abilities to learn, remember, evaluate and decide are central to who we are and how we structure our lives. These abilities, and indeed the vast majority of cognitive functions, are thought to depend on specific patterns of brain activity. Each
new experience is thought to drive a unique pattern of brain activity in the hippocampus, a brain region critical for storing memories for the events of daily life. Subsequent reactivation of this experience after learning is thought to drive a consolidation process that engrains the patterns in hippocampal and cortical circuits. Similarly, subsequent retrieval is thought to rely on the reinstatement of patterns similar to those present during the original experience. Current evidence points to the replay of sequences of hippocampal neurons during sharp-wave ripple events (SWRs) as a candidate mechanism for both memory consolidation and memory retrieval. To determine whether memory replay drives consolidation and retrieval for the associated memory representations, we will carry out directed manipulations that go beyond interrupting all SWRs to target replay events by their content. Our work will build on our expertise in real-time feedback and recent developments in cluster-less decoding that have allowed us to develop all of the technological elements required for real-time, content-based interruption of hippocampal replay events. This will allow us to assess the role of specific memory replay events in memory processes. Our Specific Aims are: 1) to develop an optimal adaptive statistical framework for real-time decoding and interruption of memory replay, 2) to test the hypothesis that hippocampal replay events drive memory consolidation for the replayed memories, and 3) to test the hypothesis that hippocampal replay events support rule learning and the internal exploration of specific future possibilities. Our real-time approach has the potential to create new causal links between the replay of specific patterns of activity and the ability to consolidation memories and to use past experience to guide future decisions.
描述(由申请人提供):学习、记忆、评估和决策的能力对于我们是谁以及我们如何构建我们的生活至关重要。这些能力,实际上是绝大多数认知功能,被认为取决于大脑活动的特定模式。每个
人们认为,新的体验会驱动海马体大脑活动的独特模式,海马体是存储日常生活事件记忆的关键区域。人们认为,学习后这种体验的重新激活会推动巩固过程,从而使海马和皮质回路中的模式根深蒂固。同样,随后的检索被认为依赖于与原始体验中出现的模式相似的模式的恢复。目前的证据表明,尖波波纹事件(SWR)期间海马神经元序列的重放是记忆巩固和记忆检索的候选机制。为了确定内存重放是否会驱动相关内存表示的整合和检索,我们将执行定向操作,这些操作不仅仅是中断所有 SWR,而是通过其内容来定位重放事件。我们的工作将建立在实时反馈方面的专业知识和无簇解码方面的最新进展的基础上,这些知识使我们能够开发实时、基于内容的海马重放事件中断所需的所有技术元素。这将使我们能够评估特定记忆重放事件在记忆过程中的作用。我们的具体目标是:1)开发用于实时解码和中断记忆重放的最佳自适应统计框架,2)测试海马重放事件驱动重放记忆的记忆巩固的假设,3)测试该假设海马体重放事件支持规则学习和对特定未来可能性的内部探索。我们的实时方法有可能在特定活动模式的重播与巩固记忆和利用过去的经验指导未来决策的能力之间建立新的因果联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uri Tzvi Eden其他文献
Uri Tzvi Eden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uri Tzvi Eden', 18)}}的其他基金
Rigorous Research Principles for Practicing Neuroscientists
神经科学家的严格研究原则
- 批准号:
10721722 - 财政年份:2023
- 资助金额:
$ 67.43万 - 项目类别:
Sleep Spindle Dynamics as a Clinical Biomarker of Aging, Alzheimer's Disease, and Trisomy 21
睡眠纺锤体动力学作为衰老、阿尔茨海默病和 21 三体症的临床生物标志物
- 批准号:
10733629 - 财政年份:2023
- 资助金额:
$ 67.43万 - 项目类别:
Statistical machine learning tools for understanding neural ensemble representations and dynamics
用于理解神经集成表示和动态的统计机器学习工具
- 批准号:
10510107 - 财政年份:2022
- 资助金额:
$ 67.43万 - 项目类别:
Measuring, Modeling, and Modulating Cross-Frequency Coupling
跨频耦合的测量、建模和调制
- 批准号:
9789298 - 财政年份:2018
- 资助金额:
$ 67.43万 - 项目类别:
Measuring, Modeling, and Modulating Cross-Frequency Coupling
跨频耦合的测量、建模和调制
- 批准号:
10002222 - 财政年份:2018
- 资助金额:
$ 67.43万 - 项目类别:
Computational and Circuit Mechanisms for information transmission in the brain
大脑信息传输的计算和电路机制
- 批准号:
9613104 - 财政年份:2015
- 资助金额:
$ 67.43万 - 项目类别:
Computational and circuit mechanisms for information transmission in the brain
大脑信息传输的计算和电路机制
- 批准号:
9012535 - 财政年份:2015
- 资助金额:
$ 67.43万 - 项目类别:
Multiscale analysis and modeling of spatiotemporal dynamics in human epilepsy
人类癫痫时空动力学的多尺度分析和建模
- 批准号:
8451467 - 财政年份:2011
- 资助金额:
$ 67.43万 - 项目类别:
Multiscale analysis and modeling of spatiotemporal dynamics in human epilepsy
人类癫痫时空动力学的多尺度分析和建模
- 批准号:
8140975 - 财政年份:2011
- 资助金额:
$ 67.43万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
- 批准号:12361074
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 67.43万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 67.43万 - 项目类别:
Developing a novel EEG-based index for evaluating amyloid and tau burden in Alzheimer's Disease
开发一种基于脑电图的新型指数来评估阿尔茨海默病中淀粉样蛋白和 tau 蛋白的负担
- 批准号:
10602059 - 财政年份:2023
- 资助金额:
$ 67.43万 - 项目类别:
Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
- 批准号:
10673857 - 财政年份:2022
- 资助金额:
$ 67.43万 - 项目类别: