Statistical machine learning tools for understanding neural ensemble representations and dynamics

用于理解神经集成表示和动态的统计机器学习工具

基本信息

  • 批准号:
    10510107
  • 负责人:
  • 金额:
    $ 186.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The brain is a massively interconnected network of specialized circuits. Understanding how these circuits support sensation, perception, cognition, and action requires measuring activity patterns within and across regions, but the measurements themselves do not produce insight into the structure or function of the underlying neuronal system. Insight requires the applications of quantitative methods that relate neuronal activity patterns to experimentally measurable variables, including things like present and past sensory inputs, current location, and current or future motor outputs. The result is an “encoding” model relating measured variables to spiking activity. Through a simple application of Bayes rule, this encoding model can be used to create a “decoding” model. In decoding, the goal is to take a pattern of spiking activity, along with a previously developed encoding model, and assess the sensory, cognitive or motor representation corresponding to the spiking. Encoding and decoding algorithms are a fundamental part of modern systems neuroscience and play a critical role in helping us understand the nature and dynamics of neuronal representations. These approaches provide a powerful way to gain insight about neuronal populations, but several limitations of current algorithms blunt their efficacy. First, while modern deep neural networks can be powerful for decoding, they have multiple shortcomings in the context of scientific discovery. Second, advanced decoding algorithms tend to be too complex and computationally intensive for most researchers to implement in the analyses of large-scale neural datasets. Moreover, robust, easy to use software that would allow less sophisticated users to take advantage of these algorithms does not exist. Third, the results of decoding are typically very sensitive to the total number of neurons recorded. Fourth, while decoding a single variable (e.g. animal position, target value, etc.) is tractable, decoding multiple variables simultaneously is beyond the capacities of current approaches. Fifth, neural response properties and the quality of neural recording often changes through the course of an experiment. Existing decoding algorithms are either static or require repeated re-estimation of the encoding model to maintain estimation accuracy. Finally, decoding has traditionally focused on observable signals, such as the animal’s position, but recent work has focused on unobserved cognitive processes, such as mental exploration. New methods are needed to determine when decoding of cognitive processes is reliable. Solving these problems requires new approaches and new parallelized software that make these approaches easy to use and efficient for the community. We have developed clusterless decoding algorithms that make very efficient use of the available data, and here we will further develop those algorithms and the software that implements them to meet all of the challenges described above. The result will be a powerful set of tools that have the potential to drive new discoveries.
大脑是一个由专门电路组成的大规模互连网络,了解这些电路如何支持。 感觉、知觉、认知和行动需要测量区域内和区域间的活动模式,但是 测量本身并不能深入了解底层神经的结构或功能 洞察力需要应用将神经活动模式与系统相关的定量方法。 实验可测量的变量,包括现在和过去的感官输入、当前位置和 结果是一个将测量变量与尖峰活动相关的“编码”模型。 通过贝叶斯规则的简单应用,该编码模型可用于创建“解码”模型。 解码,目标是采用尖峰活动模式以及先前开发的编码模型,并且 评估与脉冲编码和解码相对应的感觉、认知或运动表征。 算法是现代系统神经科学的基本组成部分,在帮助我们方面发挥着关键作用 这些方法提供了一种强大的方法来理解神经表征的本质和动态。 深入了解神经群体,但当前的一些局限性削弱了它们的功效首先, 虽然现代深度神经网络在解码方面功能强大,但它们在上下文中存在多个缺点 其次,先进的解码算法往往过于复杂且计算量大。 对于大多数研究人员来说,在大规模神经数据集的分析中需要大量实施。 易于使用的软件将允许不太熟练的用户利用这些算法 第三,解码结果通常对记录的神经元总数非常敏感。 解码单个变量(例如动物位置、目标值等)很容易处理,解码多个变量 第五,神经反应特性和质量。 现有的解码算法通常会在实验过程中发生变化。 静态或需要重复重新估计编码模型以保持估计精度。最后,解码。 传统上专注于可观察的信号,例如动物的位置,但最近的工作集中于 未观察到的认知过程,例如心理探索,需要新的方法来确定何时发生。 解决这些问题需要新的方法和新的认知过程。 我们拥有并行化软件,使这些方法对于社区来说易于使用且高效。 开发了无簇解码算法,可以非常有效地利用可用数据,在这里我们将 进一步开发这些算法和实现它们的软件,以满足所描述的所有挑战 其结果将是一套强大的工具,有可能推动新的发现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Uri Tzvi Eden其他文献

Uri Tzvi Eden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Uri Tzvi Eden', 18)}}的其他基金

Rigorous Research Principles for Practicing Neuroscientists
神经科学家的严格研究原则
  • 批准号:
    10721722
  • 财政年份:
    2023
  • 资助金额:
    $ 186.15万
  • 项目类别:
Sleep Spindle Dynamics as a Clinical Biomarker of Aging, Alzheimer's Disease, and Trisomy 21
睡眠纺锤体动力学作为衰老、阿尔茨海默病和 21 三体症的临床生物标志物
  • 批准号:
    10733629
  • 财政年份:
    2023
  • 资助金额:
    $ 186.15万
  • 项目类别:
Measuring, Modeling, and Modulating Cross-Frequency Coupling
跨频耦合的测量、建模和调制
  • 批准号:
    9789298
  • 财政年份:
    2018
  • 资助金额:
    $ 186.15万
  • 项目类别:
Measuring, Modeling, and Modulating Cross-Frequency Coupling
跨频耦合的测量、建模和调制
  • 批准号:
    10002222
  • 财政年份:
    2018
  • 资助金额:
    $ 186.15万
  • 项目类别:
Computational and Circuit Mechanisms for information transmission in the brain
大脑信息传输的计算和电路机制
  • 批准号:
    9613104
  • 财政年份:
    2015
  • 资助金额:
    $ 186.15万
  • 项目类别:
Computational and circuit mechanisms for information transmission in the brain
大脑信息传输的计算和电路机制
  • 批准号:
    9012535
  • 财政年份:
    2015
  • 资助金额:
    $ 186.15万
  • 项目类别:
Real-time analysis of memories and decisions
实时分析记忆和决策
  • 批准号:
    8899646
  • 财政年份:
    2014
  • 资助金额:
    $ 186.15万
  • 项目类别:
Real-time analysis of memories and decisions
实时分析记忆和决策
  • 批准号:
    8787330
  • 财政年份:
    2014
  • 资助金额:
    $ 186.15万
  • 项目类别:
Multiscale analysis and modeling of spatiotemporal dynamics in human epilepsy
人类癫痫时空动力学的多尺度分析和建模
  • 批准号:
    8451467
  • 财政年份:
    2011
  • 资助金额:
    $ 186.15万
  • 项目类别:
Multiscale analysis and modeling of spatiotemporal dynamics in human epilepsy
人类癫痫时空动力学的多尺度分析和建模
  • 批准号:
    8140975
  • 财政年份:
    2011
  • 资助金额:
    $ 186.15万
  • 项目类别:

相似国自然基金

高吞吐低时延的多元LDPC码译码算法及其软件架构研究
  • 批准号:
    62301029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
  • 批准号:
    52335001
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
  • 批准号:
    22373112
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向量子模拟算法的量子软件优化技术研究
  • 批准号:
    62302395
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于E级超算的裂隙岩体三维数值流形法高性能算法研究及软件开发
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
  • 批准号:
    10735564
  • 财政年份:
    2023
  • 资助金额:
    $ 186.15万
  • 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
  • 批准号:
    10810913
  • 财政年份:
    2023
  • 资助金额:
    $ 186.15万
  • 项目类别:
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
  • 批准号:
    10784983
  • 财政年份:
    2023
  • 资助金额:
    $ 186.15万
  • 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
  • 批准号:
    10712793
  • 财政年份:
    2023
  • 资助金额:
    $ 186.15万
  • 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
  • 批准号:
    10643313
  • 财政年份:
    2023
  • 资助金额:
    $ 186.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了