Transdermal Mechanical Loading for Cell Therapy-Based Bone Repair
用于基于细胞疗法的骨修复的透皮机械加载
基本信息
- 批准号:9868891
- 负责人:
- 金额:$ 34.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAdipose tissueAlkaline PhosphataseAnimal ModelBeliefBone RegenerationBone TissueBone TransplantationCalcium SignalingCalvariaCell SurvivalCell TherapyCellsCellular biologyCeramicsClinicalCollagenComputer ModelsConnecticutDataDefectDevelopmentDiagnostic radiologic examinationDinoprostoneEncapsulatedEngineeringEnvironmentExposure toFractureGelGenesGoalsHydrogelsImplantIn VitroInjectionsInjuryIntentionLaboratoriesLeftMarrowMeasurableMechanicsMethodsModelingMolecularMonitorMusMusculoskeletalOperative Surgical ProceduresOrgan TransplantationOryctolagus cuniculusOsteocalcinOsteogenesisPTGS2 genePathway interactionsPhenotypePhysiologic pulsePhysiologicalPliabilityPolymersPoriferaProcessProductionRadiationResearchResidenciesScientistSiteSurgical incisionsSystemTherapeuticThickTimeTissue EngineeringTractionUltrasonographyUniversitiesWaterWeight-Bearing stateWorkbasebonebone healingcell behaviorclinically relevantcomputer generatedcostcrosslinkdensitydesignexperiencehealinghydrogel scaffoldimplantationin silicoin vivomechanical loadmechanical propertiesmineralizationminimally invasivenovel strategiesosteopontinparticlepre-clinicalradiation effectrepairedresponsesample fixationscaffoldstem cellstissue repairtool
项目摘要
Cell therapy for bone repair combined with hydrogels, networks of crosslinked polymer chains with very high
water content, is gaining in acceptance as a potential alternative to scaffold-based tissue engineering,
especially for smaller scale defects that may be treatable through minimally invasive methods. Injecting cells
into a bony defect with a small incision may be preferable to more invasive surgical procedures when clinically
indicated. Once at the defect site the cells are left largely unperturbed within the hydrogel as the defect itself
would require stabilization to permit healing, a requirement that goes against the therapeutic benefit of
physically loading bone forming cells. It is this contradiction that has driven the work outlined in this proposal.
Non-invasive, low-intensity pulsed ultrasound has been shown to be effective for transdermal treatment of
fresh fractures (38% reduction in clinical and radiographic healing time) and fracture nonunions. While the
mechanism through which LIPUS acts is poorly understood we have developed a highly tunable ultrasound
system that demonstrates a measurable acoustic radiation force at clinically relevant ultrasound intensities and
have shown this force to be capable of physically deflecting both cells and hydrogels. However, to date
LIPUS-generated acoustic radiation force has not been paired with cell-loaded hydrogels for bone repair.
The goal of this proposal is to combine LIPUS-generated acoustic radiation force and hydrogel-based cell
therapy with the belief that both approaches together will enhance repair over either one alone. Using LIPUS-
generated loading capable of imparting physical forces on cells, it is our intention to design hydrogel scaffolds
that 1) are able to deliver encapsulated viable cells in vivo, 2) can be physically loaded by LIPUS generated
acoustic radiation force after implantation and during the healing process and 3) can be modified to transfer
varied physical forces from the hydrogel to cells such that healing would be optimized.
The objectives of the present research are 1) to evaluate the effect of LIPUS-generated acoustic radiation
force on cells embedded in hydrogels with increasing crosslinking densities, 2) to evaluate the effect of
radiation force on cells encapsulated in collagen hydrogels of varying mechanical properties to determine the
relationship between applied force and hydrogel stiffness on cell behavior, and 3) to use radiation force applied
to hydrogels that have been loaded with cells and implanted in bone defect models. Implanted hydrogels
containing cells will be loaded transdermally using acoustic radiation force. It is anticipated that the
parameters defined in the in vitro studies will result in enhanced in vivo defect healing in hydrogels under
acoustic radiation force when compared to either parameter alone.
与水凝胶、交联聚合物链网络相结合的骨修复细胞疗法
水含量,作为基于支架的组织工程的潜在替代品正在获得越来越多的认可,
特别是对于可以通过微创方法治疗的较小规模的缺陷。注射细胞
临床上,通过小切口进入骨缺损可能比更具侵入性的外科手术更可取
表明的。一旦到达缺陷部位,细胞在水凝胶内基本上不受干扰,就像缺陷本身一样
需要稳定才能愈合,这一要求违背了治疗效果
对骨形成细胞进行物理负载。正是这种矛盾推动了本提案中概述的工作。
非侵入性、低强度脉冲超声波已被证明可有效用于透皮治疗
新鲜骨折(临床和放射学愈合时间减少 38%)和骨折不愈合。虽然
LIPUS 的作用机制尚不清楚,我们开发了一种高度可调谐的超声波
系统在临床相关的超声强度下展示可测量的声辐射力,并且
已经证明这种力能够使细胞和水凝胶发生物理偏转。然而,迄今为止
LIPUS 产生的声辐射力尚未与细胞负载水凝胶配对用于骨修复。
该提案的目标是将 LIPUS 产生的声辐射力与基于水凝胶的电池结合起来
相信两种方法一起使用会比单独使用任何一种方法更能增强修复效果。使用 LIPUS-
产生的负载能够对细胞施加物理力,我们的目的是设计水凝胶支架
1) 能够在体内递送封装的活细胞,2) 可以通过 LIPUS 产生的物理负载
植入后和愈合过程中的声辐射力和 3) 可以修改以转移
水凝胶对细胞施加不同的物理力,从而优化愈合。
本研究的目标是 1) 评估 LIPUS 产生的声辐射的效果
随着交联密度的增加,对嵌入水凝胶中的细胞施加力,2) 评估效果
对封装在不同机械性能的胶原水凝胶中的细胞施加辐射力,以确定
施加的力和水凝胶刚度对细胞行为的关系,以及 3) 使用施加的辐射力
已加载细胞并植入骨缺损模型的水凝胶。植入水凝胶
含有细胞的细胞将使用声辐射力经皮加载。预计
体外研究中定义的参数将导致水凝胶在体内缺陷愈合的增强
与单独的任一参数相比时的声辐射力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yusuf M Khan其他文献
Yusuf M Khan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yusuf M Khan', 18)}}的其他基金
Transdermal Mechanical Loading for Cell Therapy-Based Bone Repair
用于基于细胞疗法的骨修复的透皮机械加载
- 批准号:
10330538 - 财政年份:2018
- 资助金额:
$ 34.1万 - 项目类别:
Transdermal Mechanical Loading for Cell Therapy-Based Bone Repair
用于基于细胞疗法的骨修复的透皮机械加载
- 批准号:
10531606 - 财政年份:2018
- 资助金额:
$ 34.1万 - 项目类别:
Ultrasound As a Physical Force for Enhanced Scaffold-Based Bone Repair
超声波作为增强支架骨修复的物理力量
- 批准号:
8638411 - 财政年份:2013
- 资助金额:
$ 34.1万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Long-term function of vocal fold replacement in swine
猪声带置换的长期功能
- 批准号:
10537089 - 财政年份:2022
- 资助金额:
$ 34.1万 - 项目类别:
Long-term function of vocal fold replacement in swine
猪声带置换的长期功能
- 批准号:
10742917 - 财政年份:2022
- 资助金额:
$ 34.1万 - 项目类别:
Advanced Treatment Endpoint Assessment in MR-guided Focused Ultrasound
MR 引导聚焦超声的高级治疗终点评估
- 批准号:
10115726 - 财政年份:2020
- 资助金额:
$ 34.1万 - 项目类别:
Biodegradable Piezoelectric Scaffold for Bone regeneration
用于骨再生的可生物降解压电支架
- 批准号:
9913470 - 财政年份:2019
- 资助金额:
$ 34.1万 - 项目类别:
Transdermal Mechanical Loading for Cell Therapy-Based Bone Repair
用于基于细胞疗法的骨修复的透皮机械加载
- 批准号:
10330538 - 财政年份:2018
- 资助金额:
$ 34.1万 - 项目类别: