Longitudinal Voice Patterns in Bipolar Disorder
双相情感障碍的纵向声音模式
基本信息
- 批准号:8658149
- 负责人:
- 金额:$ 27.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-02 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccentAcousticsAddressAlgorithmsAnxiety DisordersBehaviorBipolar DepressionBipolar DisorderBipolar IBipolar IICar PhoneCellular PhoneCharacteristicsChargeClinicalClinical ResearchClinical assessmentsCognitiveComputational algorithmComputer SimulationComputersComputing MethodologiesDataData CollectionDepressed moodDetectionDevicesDiseaseEarly DiagnosisEmotionalEmotionsEnvironmental MonitoringFrequenciesFutureGoalsHamilton Rating Scale for DepressionHealthHumanIndividualInterventionInterviewKnowledgeLongitudinal StudiesLoudnessMachine LearningManicMeasurableMeasuresMedicalMental DepressionMental disordersModelingMonitorMood DisordersMoodsMotorMovementNeurocognitiveObserver VariationOutcomeParticipantPatientsPatternPattern RecognitionPerceptionPeriodicityPersonalityPhasePopulationPreventionProcessPropertyPsychiatric therapeutic procedurePsychopathologyPsychotic DisordersRecording of previous eventsRecruitment ActivitySecureSensoryShapesSolutionsSpeechSpeech AcousticsStressStructureTechnologyTelephoneTestingTimeVariantVoiceWorkbasebipolar maniaclinically significantdigitalheuristicsinnovationinsightinstrumentlexicalmarkov modelmental statepressureprogramspsychologicpublic health relevanceresearch studyspeech processingstatisticstool
项目摘要
DESCRIPTION (provided by applicant): The proposed research study will identify changes in acoustic speech parameters, using innovative cell phone based technology, in order to predict clinically significant mood state transitions in individuals with bipolar disorder. The central hypothesis is that there are quantitative changes in acoustic speech patterns that occur in advance of clinically observed mood changes. These changes is speech patterns can be identified using computational methods over longitudinal monitoring of ecologically gathered voice data that requires minimal input from the individual being observed. These computationally determined changes are imperceptible to human observation but are hypothesized to predict clinically significant mood transitions. To test this hypothesis we will study 50 rapid cycling individuals with bipolar I and II disorder and 10 healthy controls for 6 months by recording their acoustic characteristics of speech (not lexical content) while using a mobile "smart- phone". In this manner we are gathering data free of observer bias. We will also gather weekly clinical assessments with standardized instruments (Hamilton Depression Rating Scale and Young Mania Rating Scale) in which we will record their physical voice patterns as well. Bipolar disorder is an ideal disorder for the initial study of speech patterns in the assessment of psychopathology. It is an illness with pathological disruptions of emotion, cognitive and motor capacity. There is a periodicity of the illness pattern that oscillates between
manic energized states with charged emotions and pressured rapid speech to depressed emotional phases with retarded movements and inhibited quality and quantity of speech. The successful management of patients with bipolar disorder requires ongoing clinical monitoring of mental states. Currently there are few technologies that address the challenge of monitoring individuals long-term in an ecological manner. Speech pattern recognition technology would allow for unobtrusive monitoring that can be seamlessly integrated into daily routine of mobile phone usage to predict future changes in illness states. The proposed study tests a highly innovative approach by developing a practical solution to assist in the longitudinal management of bipolar patients. Computational algorithms of analyzed speech patterns will use statistic (Gausian Mixture Models and Support Vector Machines) and dynamic (Hidden Markov Models) modeling. This project has the potential of transformative advances in the management of psychiatric disease, as speech patterns, and changes therein, are highly likely to be reflective of
current and emerging psychopathology. If successful this technology will provide for the prioritization of patients for medical and psychiatric care based on computational detection of change patterns in voice and speech before they are clinically observable.
描述(由申请人提供):拟议的研究将使用基于手机的创新技术来识别声学语音参数的变化,以预测双相情感障碍患者的临床显着情绪状态转变。中心假设是,在临床观察到的情绪变化之前,声音语音模式发生了定量变化。这些变化是可以使用计算方法对生态收集的语音数据进行纵向监测来识别语音模式,这需要被观察个体的最少输入。这些计算确定的变化对于人类观察来说是难以察觉的,但假设可以预测临床上显着的情绪转变。为了检验这一假设,我们将对 50 名患有 I 型和 II 型双相情感障碍的快速循环个体和 10 名健康对照组进行为期 6 个月的研究,通过使用移动“智能手机”记录他们的语音声学特征(而非词汇内容)。通过这种方式,我们收集的数据没有观察者的偏见。我们还将使用标准化工具(汉密尔顿抑郁评定量表和年轻躁狂评定量表)收集每周的临床评估,其中我们还将记录他们的身体声音模式。双相情感障碍是精神病理学评估中言语模式初步研究的理想障碍。这是一种对情绪、认知和运动能力造成病理性破坏的疾病。疾病模式存在周期性,在
躁狂的、精力充沛的状态,情绪激动,言语急促,情绪低落,动作迟缓,言语的质量和数量受到抑制。双相情感障碍患者的成功治疗需要对精神状态进行持续的临床监测。目前,很少有技术能够解决以生态方式长期监测个体的挑战。语音模式识别技术将实现不显眼的监控,可以无缝集成到手机使用的日常工作中,以预测疾病状态的未来变化。拟议的研究通过开发实用的解决方案来测试高度创新的方法,以协助双相情感障碍患者的纵向管理。分析语音模式的计算算法将使用统计(高斯混合模型和支持向量机)和动态(隐马尔可夫模型)建模。该项目具有在精神疾病管理方面取得变革性进步的潜力,因为言语模式及其变化很可能反映了
当前和新兴的精神病理学。如果成功,这项技术将在临床可观察到声音和言语变化模式之前,根据对声音和言语变化模式的计算检测,为患者提供医疗和精神护理的优先顺序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MELVIN G MCINNIS其他文献
MELVIN G MCINNIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MELVIN G MCINNIS', 18)}}的其他基金
MHealth Monitoring of Acoustic and Behavioral Patterns in Bipolar Disorder Across Cultures
MHealth 监测跨文化双相情感障碍的声学和行为模式
- 批准号:
9340389 - 财政年份:2017
- 资助金额:
$ 27.21万 - 项目类别:
Longitudinal Voice Patterns in Bipolar Disorder
双相情感障碍的纵向声音模式
- 批准号:
8494970 - 财政年份:2013
- 资助金额:
$ 27.21万 - 项目类别:
Fine mapping 8q24 in Familial Bipolar Disorder
家族性双相情感障碍中 8q24 的精细定位
- 批准号:
7067205 - 财政年份:2005
- 资助金额:
$ 27.21万 - 项目类别:
Adolescents at High Risk for Familial Bipolar Disorder
青少年患家族性躁郁症的高风险
- 批准号:
7369867 - 财政年份:2005
- 资助金额:
$ 27.21万 - 项目类别:
Adolescents at High Risk for Familial Bipolar Disorder
青少年患家族性躁郁症的高风险
- 批准号:
7577331 - 财政年份:2005
- 资助金额:
$ 27.21万 - 项目类别:
Adolescents at High Risk for Familial Bipolar Disorder.
青少年患有家族性双相情感障碍的高风险。
- 批准号:
7068014 - 财政年份:2005
- 资助金额:
$ 27.21万 - 项目类别:
Fine mapping 8q24 in Familial Bipolar Disorder
家族性双相情感障碍中 8q24 的精细定位
- 批准号:
7228197 - 财政年份:2005
- 资助金额:
$ 27.21万 - 项目类别:
Adolescents at High Risk for Familial Bipolar Disorder.
青少年患有家族性双相情感障碍的高风险。
- 批准号:
7225902 - 财政年份:2005
- 资助金额:
$ 27.21万 - 项目类别:
Fine mapping 8q24 in Familial Bipolar Disorder
家族性双相情感障碍中 8q24 的精细定位
- 批准号:
6869005 - 财政年份:2005
- 资助金额:
$ 27.21万 - 项目类别:
Adolescents at High Risk for Familial Bipolar Disorder.
青少年患有家族性双相情感障碍的高风险。
- 批准号:
6875444 - 财政年份:2005
- 资助金额:
$ 27.21万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Flexible representation of speech in human auditory cortex
人类听觉皮层中语音的灵活表示
- 批准号:
10605606 - 财政年份:2022
- 资助金额:
$ 27.21万 - 项目类别:
CCI-Mobile: Signal Processing Advancements for Cochlear Implant Users in Naturalistic Environments
CCI-Mobile:自然环境中人工耳蜗用户的信号处理进步
- 批准号:
10667673 - 财政年份:2018
- 资助金额:
$ 27.21万 - 项目类别:
CCI-Mobile: Signal Processing Advancements for Cochlear Implant Users in Naturalistic Environments
CCI-Mobile:自然环境中人工耳蜗用户的信号处理进步
- 批准号:
10390454 - 财政年份:2018
- 资助金额:
$ 27.21万 - 项目类别:
Investigating neural mechanisms for flexible, robust speech perception with fMRI
利用功能磁共振成像研究灵活、稳健的语音感知的神经机制
- 批准号:
8992857 - 财政年份:2015
- 资助金额:
$ 27.21万 - 项目类别:
Longitudinal Voice Patterns in Bipolar Disorder
双相情感障碍的纵向声音模式
- 批准号:
8494970 - 财政年份:2013
- 资助金额:
$ 27.21万 - 项目类别: